126 resultados para Overturning of control blocks
Resumo:
This study investigated the effects of workload, control, and general self-efficacy on affective task reactions (i.e., demands-ability fit, active coping, and anxiety) during a work simulation. The main goals were: (1) to determine the extent general self-efficacy moderates the effects of demand and control on affective task reactions, and; (2) to determine if this varies as a function of changes in workload. Participants (N=141) completed an inbox activity under conditions of low or high control and within low and high workload conditions. The order of trials varied so that workload increased or decreased. Results revealed individuals with high general self-efficacy reported better demands-abilities fit and active coping as well as less anxiety. Three interactive effects were found. First, it was found that high control increased demands-abilities fit from trial 1 to trial 2, but only when workload decreased. Second, it was found that low efficacious individuals active coping increased in trial 2, but only under high control. Third, it was found that high control helped high efficacious individuals manage anxiety when workload decreased. However, for individuals with low general self-efficacy, neither high nor low control alleviated anxiety (i.e., whether workload increased or decreased over time).
Resumo:
This paper sets out to contribute to the literature on the design and the implementation of management control systems. To this end, we question what is discussed when a management control system is to be chosen and on what decision-making eventually rests. This study rests upon an ethnomethodology of the Salvation Army’s French branch. Operating in the dual capacity of a researcher and a counsellor to management, between 2000 and 2007, we have unrestricted access to internal data revealing the backstage of management control: discussions and interactions surrounding the choosing of control devices. We contribute to understanding the arising of a need for control, the steps and process followed to decide upon a management control system, and controls in nonprofits. [Cet article vise à contribuer à la littérature sur la mise en place des systèmes de contrôle de gestion. À cette fin, nous questionnons ce qui est discuté lors du choix d’un système de contrôle et sur quoi repose in fine la décision. Cet article est fondé sur une approche ethnométhodologique de l’Armée du Salut en France permise par notre double qualité de chercheurs mais également de conseiller auprès de la direction de l’organisation entre 2000 et 2007. Un accès illimité à des données internes nous permet ainsi de mettre en lumière les aspects méconnus et invisibles du contrôle de gestion : les discussions et interactions entourant le choix d’outils. Nous contribuons à la compréhension de l’émergence du besoin de contrôle, des étapes et du processus de choix d’outils et enfin du contrôle de gestion dans une organisation à but non lucratif.]
Resumo:
Purpose: This is a study of the social consequences of accounting controls over labour. It examines the system of tasking used to control Indian indentured workers using a governmentality approach in the historical context of Fijian sugar plantations during the British colonial period, from 1879 to 1920. Method/ Methodology: Archival data consisting of documents from the Colonial Secretary’s Office, reports and related literature on Indian indentured labour was accessed from the National Archives of Fiji. In addition, documented accounts of the experiences of indentured labourers over the period of the study give voice to the social costs of the indenture system, highlighting the social impact of accounting control systems. Findings: Accounting and management controls were developed to extract surplus value from Indian labour. The practice of tasking was implemented in a plantation structure where indentured labourers were controlled hierarchically through a variety of calculative monitoring practices. This resulted in the exploitation and consequent economic, social and racial marginalisation of indentured workers. Originality: The paper contributes to the growing body of literature highlighting the social effects of accounting control systems. It exposes the social costs borne by indentured workers employed on Fijian sugar plantations. Practice/ Research Implications: The study promotes better understanding of the practice and impact of accounting as a technology of government and control within a particular institutional setting, in this case the British colony of Fiji. By highlighting the social implications of these controls in their historical context, we alert corporations, government policy makers, accountants and workers to the socially damaging effects of exploitive management control systems.
Resumo:
The construct known as locus of control (LOC) was introduced by J. B. Rotter in 1966 and refers to individuals' beliefs about the underlying main causes of events happening in their lives. Individuals with an internal LOC believe that the outcomes they experience are the result of their own actions. They are often described as believing themselves to be the masters of their own fate and to be in control of their own destinies. In contrast, individuals with an external LOC believe that external factors—such as fate, luck, God, or powerful others—determine the outcomes that they experience in their lives. They are often described as taking a passive approach toward their lives.
Resumo:
Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.
Resumo:
This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Resumo:
Popular wireless networks, such as IEEE 802.11/15/16, are not designed for real-time applications. Thus, supporting real-time quality of service (QoS) in wireless real-time control is challenging. This paper adopts the widely used IEEE 802.11, with the focus on its distributed coordination function (DCF), for soft-real-time control systems. The concept of the critical real-time traffic condition is introduced to characterize the marginal satisfaction of real-time requirements. Then, mathematical models are developed to describe the dynamics of DCF based real-time control networks with periodic traffic, a unique feature of control systems. Performance indices such as throughput and packet delay are evaluated using the developed models, particularly under the critical real-time traffic condition. Finally, the proposed modelling is applied to traffic rate control for cross-layer networked control system design.
Resumo:
The Black Rat (Rattus rattus), a global pest within the macadamia production industry, causes up to 30% crop damage in Australian orchards. During early stages of production in Australia, research demonstrated the importance of non crop adjacent habitats as significant in affecting the patterns of crop damage seen throughout orchards. Where once rodent damage was limited to the outside edges of orchard blocks, growers are now reporting finding crop damage throughout entire orchards. This study therefore aims to explore the spatial patterns of rodent distribution and damage now occurring in Australian macadamia orchards. We show that rodent damage and rodent distribution in these newer production regions differ from that shown in previous Australian research. Previous Australian research has shown damage patterns which were associated with the edges of orchard blocks however this study demonstrates a more widespread damage distribution. In the current study there is no relationship between rodent damage and the orchard edge. Arboreal rodent nests were identified within these newer orchard systems, suggesting rodents are residing within the tree component of the orchard system and not dependent on adjacent non-crop habitat for shelter. Results from this study confirm that rodents have modified their nesting and foraging behaviour in newer orchards systems in Australia. We suggest that this is a response of increased and prolonged availability of macadamia nuts in newer production regions enabling populations to be maintained throughout the year. Management strategies will require modification if control is to be achieved.
Resumo:
In Exercise in Losing Control (2007) and We Are for You Because We are Against Them (2010), Austrian-born artist Noemi Lakmaier represents Otherness – and, in particular, the experience of Otherness as one of being vulnerable, dependent or visibly different from everyone else in a social situation – by placing first herself then a group of participants in big circular balls she calls ‘Weebles’. In doing so, Lakmaier depicts Otherness as an absurd, ambiguous or illegible element in otherwise everyday ‘living installations’ in which people meet, converse, dine and connect with spectators and passersby on the street. In this paper I analyse the way spectators and passersby respond to the weeble-wearers. Not surprisingly, responses vary – from people who hurry away, to people who try to talk to the weeble-wearer, to people who try to kick or tip the weeble to test its reality. The not-quite-normal situation, and the visibility of the spectators in the situation, asks spectators to rehearse their response to corporeal differences that might be encountered in day-to-day life. As the range of comments, confrontations and struggles show, the situation transfers the ill-at-ease, embarrassed and awkward aspects of dealing with corporeal difference from the disabled performer to the able spectator-become-performer. In this paper, I theorise some of the self-conscious spectatorial responses this sort of work can provoke in terms of an ethics of embarrassment. As the Latin roots of the word attest, embarrassment is born of a block, barrier or obstacle to move smoothly through a social or communicative encounter. In Lakmaier’s work, a range of potential blocks present themselves. The spectators’ responses – from ignoring the weeble, to querying the weeble, to asking visual, verbal or physical questions about how the weeble works, and so on – are ways of managing the interruption and moving forward. They are, I argue, strategies for moving from confusion to comprehension, or from what Emmanuel Levinas would call an encounter with the unknown to back into the horizon of the known, classified and classifiable. They flag the potential for what Levinas would call an ethical face-to-face encounter with the Other in which spectators and passersby may unexpectedly find themselves in a vulnerable position.
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.
Resumo:
Integration of small-scale electricity generators, known as Distributed Generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of synchronous-type generator has potential to give the DG a better chance in participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimizes interaction with other active devices, such as On-load Tap Changing Transformer (OLTC) and voltage regulator. The technique has been developed based on the concept of control zone, Line Drop Compensation (LDC), as well as the choice of controller's parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.