24 resultados para Olfactory
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
In the elderly, the risks for protein-energy malnutrition from older age, dementia, depression and living alone have been well-documented. Other risk factors including anorexia, gastrointestinal dysfunction, loss of olfactory and taste senses and early satiety have also been suggested to contribute to poor nutritional status. In Parkinson’s disease (PD), it has been suggested that the disease symptoms may predispose people with PD to malnutrition. However, the risks for malnutrition in this population are not well-understood. The current study’s aim was to determine malnutrition risk factors in community-dwelling adults with PD. Nutritional status was assessed using the Patient-Generated Subjective Global Assessment (PG-SGA). Data about age, time since diagnosis, medications and living situation were collected. Levodopa equivalent doses (LDED) and LDED per kg body weight (mg/kg) were calculated. Depression and anxiety were measured using the Beck’s Depression Inventory (BDI) and Spielberger Trait Anxiety questionnaire, respectively. Cognitive function was assessed using the Addenbrooke’s Cognitive Examination (ACE-R). Non-motor symptoms were assessed using the Scales for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT) and Modified Constipation Assessment Scale (MCAS). A total of 125 community-dwelling people with PD were included, average age of 70.2±9.3(35-92) years and average time since diagnosis of 7.3±5.9(0–31) years. Average body mass index (BMI) was 26.0±5.5kg/m2. Of these, 15% (n=19) were malnourished (SGA-B). Multivariate logistic regression analysis revealed that older age (OR=1.16, CI=1.02-1.31), more depressive symptoms (OR=1.26, CI=1.07-1.48), lower levels of anxiety (OR=.90, CI=.82-.99), and higher LDED per kg body weight (OR=1.57, CI=1.14-2.15) significantly increased malnutrition risk. Cognitive function, living situation, number of prescription medications, LDED, years since diagnosis and the severity of non-motor symptoms did not significantly influence malnutrition risk. Malnutrition results in poorer health outcomes. Proactively addressing the risk factors can help prevent declines in nutritional status. In the current study, older people with PD with depression and greater amounts of levodopa per body weight were at increased malnutrition risk.
Resumo:
Evolutionary theory predicts that herbivorous insects should lay eggs on plants in a way that reflects the suitability of each plant species for larval development. Empirical studies, however, often fail to find any relationship between an adult insect’s choice of host–plant and offspring fitness, and in such cases, it is generally assumed that other ‘missing’ factors (e.g. predation, host–plant abundance, learning and adult feeding sites) must be contributing to overall host suitability. Here, I consider an alternative theory – that a fitness cost inherent in the olfactory mechanism could constrain the evolution of insect host selection. I begin by reviewing current knowledge of odour processing in the insect antennal lobe with the aid of a simple schematic: the aim being to explain the workings of this mechanism to scientists who do not have prior knowledge in this field. I then use the schematic to explore how an insect’s perception of host and non-host odours is governed by a set of processing rules, or algorithm. Under the assumptions of this mechanistic view, the perception of every plant odour is interrelated, and seemingly bad host choices can still arise as part of an overall adaptive behavioural strategy. I discuss how an understanding of mechanism can improve the interpretation of theoretical and empirical studies in insect behaviour and evolution.
Resumo:
Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.
Resumo:
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
Smell (olfactory) and taste (gustatory) are key senses in the regulation of nourishment and individual safety. Olfactory and gustatory dysfunctions have been infrequently reported together in patients following stroke (Landis et al., 2006; Leopold et al., 2006). This case report details two patients who experienced smell and taste dysfunction following minor stroke events. Symptoms reported included hyposmia (diminished sense of smell) and anosmia (complete loss of smell), and dysgeusia (distorted taste). Patients' sense of smell and taste were assessed in an ambulatory care stroke prevention clinic eight months following their strokes. Patient A presented with minor stroke due to a lesion in the anterior circulation, patient B with a lesion in the posterior circulation. Both patients reported intense olfactory and gustatory dysfunction immediately following their strokes. Examination revealed a general inability to detect subtle odours and the ability to identify only 'sweet' tastes for both patients. In addition, both patients reported heavily salting or sweetening their food to mask the distorted and unpleasant taste, which also impacted comorbid conditions such as hypertension and diabetes. Patients and their spouses reported a decrease in their appreciation of family-related activities due to the patients' olfactory and gustatory dysfunction. Patients reported weight loss, lack of energy and strength, likely due to poor nutrition. Olfactory and gustatory dysfunctions are potentially deleterious outcomes following minor stroke and should be assessed by health care professionals prior to patient discharge. Assistance may be required to promote the health and well-being of patients and their carers if smell and taste are impacted by the stroke event.
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
BACKGROUND: Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS: Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS: Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION: These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity