17 resultados para OWL MONKEYS
Resumo:
Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.
Resumo:
Birds exhibit a huge array of behavior, ecology and physiology, and occupy nearly every environment on earth, ranging from the desert outback of Australia to the tropical rain forests of Panama. Some birds have adopted a fully nocturnal lifestyle, such as the barn owl and kiwi, while others, such as the albatross, spend nearly their entire life flying over the ocean. Each species has evolved unique adaptations over millions of years to function in their respective niche. In order to increase processing power or network efficiency, many of these adaptations require enlargements and/or specializations of the brain as a whole or of specific brain regions. In this study, we examine the relative size and morphology of 9 telencephalic regions in a number of Paleognath and Neognath birds and relate the findings to differences in behavior and sensory ecology. We pay particular attention to those species that have undergone a relative enlargement of the telencephalon to determine whether this relative increase in telencephalic size is homogeneous across different brain regions or whether particular regions have become differentially enlarged. The analysis indicates that changes in the relative size of telencephalic regions are not homogeneous, with every species showing hypertrophy or hypotrophy of at least one of them. The three-dimensional structure of these regions in different species was also variable, in particular that of the mesopallium in kiwi. The findings from this study provide further evidence that the changes in relative brain size in birds reflect a process of mosaic evolution.