87 resultados para Numerical One-Loop Integration
Resumo:
We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ(A) where φ(z) = [exp(z) - 1]/z on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ(A)v can be approximated by Krylov subspace methods that require only matrix-vector products with A. We prove that despite the use of this approximation the scheme remains second order. Furthermore, we provide a practical variable-stepsize implementation of the integrator by deriving an estimate of the local error that requires only a single additional function evaluation. Numerical experiments performed on two-dimensional test problems demonstrate that this implementation outperforms second-order, variable-stepsize implementations of the backward differentiation formulae.
Resumo:
Competitive markets are increasingly driving new initiatives for shorter cycle times resulting in increased overlapping of project phases. This, in turn, necessitates improving the interfaces between the different phases to be overlapped (integrated), thus allowing transfer of processes, information and knowledge from one individual or team to another. This transfer between phases, within and between projects, is one of the basic challenges to the philosophy of project management. To make the process transfer more transparent with minimal loss of momentum and project knowledge, this paper draws upon Total Quality Management (TQM) and Business Process Re-engineering (BPR) philosophies to develop a Best Practice Model for managing project phase integration. The paper presents the rationale behind the model development and outlines its two key parts; (1) Strategic Framework and (2) Implementation Plan. Key components of both the Strategic Framework and the Implementation Plan are presented and discussed.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. In this paper, a finite element model for the wheel flat study is developed by use of the FEA software package ANSYS. The effect of the wheel flat to impact force on sleepers is investigated. It has found that the wheel flat significantly increases impact forces and maximum Von Mises stress, and also delays the peak position of dynamic variation for impact forces on both rail and sleeper.
Resumo:
We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.
Resumo:
A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
In recent years, enterprise architecture (EA) has captured a growing attention as a means to systematically consolidate and interrelate diverse business and IT artefacts in order to provide holistic decision support. The recent popularity of a service-orientation has added “service “and related constructs as a new element that requires consideration within an Enterprise Architecture. Since the emergence of the Service-Oriented Architecture (SOA), many attempts have been made to incorporate SOA artefacts in existing EA frameworks. Yet, the approaches taken to achieve this goal differ substantially for the most commonly used EA frameworks to date. SOA in the context of enterprise architecture is one of the future research challenges. Several authors argue that further research is needed in order to understand how SOA impacts prior enterprise architecture frameworks. This study explores SOA integration within EA, identifies SOA integration approaches within EA and identifies factors that impact SOA integration within Enterprise Architecture.
Resumo:
The process of learning symbolic Arabic digits in early childhood requires that magnitude and spatial information integrates with the concept of symbolic digits. Previous research has separately investigated the development of automatic access to magnitude and spatial information from symbolic digits. However, developmental trajectories of symbolic number knowledge cannot be fully understood when considering components in isolation. In view of this, we have synthesized the existing lines of research and tested the use of both magnitude and spatial information with the same sample of British children in Years 1, 2 and 3 (6-8 years of age). The physical judgment task of the numerical Stroop paradigm (NSP) demonstrated that automatic access to magnitude was present from Year 1 and the distance effect signaled that a refined processing of numerical information had developed. Additionally, a parity judgment task showed that the onset of the Spatial-Numerical Association of Response Codes (SNARC) effect occurs in Year 2. These findings uncover the developmental timeline of how magnitude and spatial representations integrate with symbolic number knowledge during early learning of Arabic digits and resolve inconsistencies between previous developmental and experimental research lines.
Resumo:
Despite promising benefits and advantages, there are reports of failures and low realisation of benefits in Enterprise System (ES) initiatives. Among the research on the factors that influence ES success, there is a dearth of studies on the knowledge implications of multiple end-user groups using the same ES application. An ES facilitates the work of several user groups, ranging from strategic management, management, to operational staff, all using the same system for multiple objectives. Given the fundamental characteristics of ES – integration of modules, business process views, and aspects of information transparency – it is necessary that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Recent literature on ES implementation highlights the importance of Knowledge Integration (KI) for implementation success. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. Many organisations do not achieve the potential benefits from their ES investment because they do not consider the need or their ability to integrate their employees’ knowledge. This study is designed to improve our understanding of the influence of KI among ES end-users on operational ES success. The three objectives of the study are: (I) to identify and validate the antecedents of KI effectiveness, (II) to investigate the impact of KI effectiveness on the goodness of individuals’ ES-knowledge base, and (III) to examine the impact of the goodness of individuals’ ES-knowledge base on the operational ES success. For this purpose, we employ the KI factors identified by Grant (1996) and an IS-impact measurement model from the work of Gable et al. (2008) to examine ES success. The study derives its findings from data gathered from six Malaysian companies in order to obtain the three-fold goal of this thesis as outlined above. The relationships between the antecedents of KI effectiveness and its consequences are tested using 188 responses to a survey representing the views of management and operational employment cohorts. Using statistical methods, we confirm three antecedents of KI effectiveness and the consequences of the antecedents on ES success are validated. The findings demonstrate a statistically positive impact of KI effectiveness of ES success, with KI effectiveness contributing to almost one-third of ES success. This research makes a number of contributions to the understanding of the influence of KI on ES success. First, based on the empirical work using a complete nomological net model, the role of KI effectiveness on ES success is evidenced. Second, the model provides a theoretical lens for a more comprehensive understanding of the impact of KI on the level of ES success. Third, restructuring the dimensions of the knowledge-based theory to fit the context of ES extends its applicability and generalisability to contemporary Information Systems. Fourth, the study develops and validates measures for the antecedents of KI effectiveness. Fifth, the study demonstrates the statistically significant positive influence of the goodness of KI on ES success. From a practical viewpoint, this study emphasises the importance of KI effectiveness as a direct antecedent of ES success. Practical lessons can be drawn from the work done in this study to empirically identify the critical factors among the antecedents of KI effectiveness that should be given attention.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.