17 resultados para North, Frederick, Earl of Guilford.
Resumo:
The extended recruitment season for short-lived species such as prawns biases the estimation of growth parameters from length-frequency data when conventional methods are used. We propose a simple method for overcoming this bias given a time series of length-frequency data. The difficulties arising from extended recruitment are eliminated by predicting the growth of the succeeding samples and the length increments of the recruits in previous samples. This method requires that some maximum size at recruitment can be specified. The advantages of this multiple length-frequency method are: it is simple to use; it requires only three parameters; no specific distributions need to be assumed; and the actual seasonal recruitment pattern does not have to be specified. We illustrate the new method with length-frequency data on the tiger prawn Penaeus esculentus from the north-western Gulf of Carpentaria, Australia.
Resumo:
Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.