135 resultados para Neural tube


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study employs BP neural network to simulate the development of Chinese private passenger cars. Considering the uncertain and complex environment for the development of private passenger cars, indicators of economy, population, price, infrastructure, income, energy and some other fields which have major impacts on it are selected at first. The network is proved to be operable to simulate the progress of chinese private passenger cars after modeling, training and generalization test. Based on the BP neural network model, sensitivity analysis of each indicator is carried on and shows that the sensitivity coefficients of fuel price change suddenly. This special phenomenon reveals that the development of Chinese private passenger cars may be seriously affected by the recent high fuel price. This finding is also consistent with facts and figures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful project delivery of construction projects depends on many factors. With regard to the construction of a facility, selecting a competent contractor for the job is paramount. As such, various approaches have been advanced to facilitate tender award decisions. Essentially, this type of decision involves the prediction of a bidderÕs performance based on information available at the tender stage. A neural network based prediction model was developed and presented in this paper. Project data for the study were obtained from the Hong Kong Housing Department. Information from the tender reports was used as input variables and performance records of the successful bidder during construction were used as output variables. It was found that the networks for the prediction of performance scores for Works gave the highest hit rate. In addition, the two most sensitive input variables toward such prediction are ‘‘Difference between Estimate’’ and ‘‘Difference between the next closest bid’’. Both input variables are price related, thus suggesting the importance of tender sufficiency for the assurance of quality production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have examined the associations between cancers and circulating 25-hydroxyvitamin D [25(OH)D], but little is known about the impact of different laboratory practices on 25(OH)D concentrations. We examined the potential impact of delayed blood centrifuging, choice of collection tube, and type of assay on 25(OH)D concentrations. Blood samples from 20 healthy volunteers underwent alternative laboratory procedures: four centrifuging times (2, 24, 72, and 96 h after blood draw); three types of collection tubes (red top serum tube, two different plasma anticoagulant tubes containing heparin or EDTA); and two types of assays (DiaSorin radioimmunoassay [RIA] and chemiluminescence immunoassay [CLIA/LIAISON®]). Log-transformed 25(OH)D concentrations were analyzed using the generalized estimating equations (GEE) linear regression models. We found no difference in 25(OH)D concentrations by centrifuging times or type of assay. There was some indication of a difference in 25(OH)D concentrations by tube type in CLIA/LIAISON®-assayed samples, with concentrations in heparinized plasma (geometric mean, 16.1 ng ml−1) higher than those in serum (geometric mean, 15.3 ng ml−1) (p = 0.01), but the difference was significant only after substantial centrifuging delays (96 h). Our study suggests no necessity for requiring immediate processing of blood samples after collection or for the choice of a tube type or assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.