267 resultados para Network-based positioning
Resumo:
In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.
Resumo:
It is increasingly understood that learning and thus innovation often occurs via highly interactive, iterative, network-based processes. Simultaneously, economic development policy is increasingly focused on small and medium-sized enterprises (SMEs) as a means of generating growth, creating a clear research issue in terms of the roles and interactions of government policy, universities, and other sources of knowledge, SMEs, and the creation and dissemination of innovation. This paper analyses the contribution of a range of actors in an SME innovation creation and dissemination framework, reviewing the role of various institutions therein, exploring the contribution of cross-locality networks, and identifying the mechanisms required to operationalise such a framework. Bivariate and multivariate (regression) techniques are employed to investigate both innovation and growth outcomes in relation to these structures; data are derived from the survey responses of over 450 SMEs in the UK. Results are complex and dependent upon the nature of institutions involved, the type of knowledge sought, and the spatial level of the linkages in place but overall highlight the value of cross-locality networks, network governance structures, and certain spillover effects from universities. In general, we find less support for the factors predicting SME growth outcomes than is the case for innovation. Finally, we outline an agenda for further research in the area.
Resumo:
Trust can be used for neighbor formation to generate automated recommendations. User assigned explicit rating data can be used for this purpose. However, the explicit rating data is not always available. In this paper we present a new method of generating trust network based on user’s interest similarity. To identify the interest similarity, we use user’s personalized tag information. This trust network can be used to find the neighbors to make automated recommendation. Our experiment result shows that the precision of the proposed method outperforms the traditional collaborative filtering approach.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.
Resumo:
Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Resumo:
Purpose – The purpose of this paper is to examine the use of bid information, including both price and non-price factors in predicting the bidder’s performance. Design/methodology/approach – The practice of the industry was first reviewed. Data on bid evaluation and performance records of the successful bids were then obtained from the Hong Kong Housing Department, the largest housing provider in Hong Kong. This was followed by the development of a radial basis function (RBF) neural network based performance prediction model. Findings – It is found that public clients are more conscientious and include non-price factors in their bid evaluation equations. With the input variables used the information is available at the time of the bid and the output variable is the project performance score recorded during work in progress achieved by the successful bidder. It was found that past project performance score is the most sensitive input variable in predicting future performance. Research limitations/implications – The paper shows the inadequacy of using price alone for bid award criterion. The need for a systemic performance evaluation is also highlighted, as this information is highly instrumental for subsequent bid evaluations. The caveat for this study is that the prediction model was developed based on data obtained from one single source. Originality/value – The value of the paper is in the use of an RBF neural network as the prediction tool because it can model non-linear function. This capability avoids tedious ‘‘trial and error’’ in deciding the number of hidden layers to be used in the network model. Keywords Hong Kong, Construction industry, Neural nets, Modelling, Bid offer spreads Paper type Research paper
Resumo:
Successful project delivery of construction projects depends on many factors. With regard to the construction of a facility, selecting a competent contractor for the job is paramount. As such, various approaches have been advanced to facilitate tender award decisions. Essentially, this type of decision involves the prediction of a bidderÕs performance based on information available at the tender stage. A neural network based prediction model was developed and presented in this paper. Project data for the study were obtained from the Hong Kong Housing Department. Information from the tender reports was used as input variables and performance records of the successful bidder during construction were used as output variables. It was found that the networks for the prediction of performance scores for Works gave the highest hit rate. In addition, the two most sensitive input variables toward such prediction are ‘‘Difference between Estimate’’ and ‘‘Difference between the next closest bid’’. Both input variables are price related, thus suggesting the importance of tender sufficiency for the assurance of quality production.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.
Resumo:
Buffer overflow vulnerabilities continue to prevail and the sophistication of attacks targeting these vulnerabilities is continuously increasing. As a successful attack of this type has the potential to completely compromise the integrity of the targeted host, early detection is vital. This thesis examines generic approaches for detecting executable payload attacks, without prior knowledge of the implementation of the attack, in such a way that new and previously unseen attacks are detectable. Executable payloads are analysed in detail for attacks targeting the Linux and Windows operating systems executing on an Intel IA-32 architecture. The execution flow of attack payloads are analysed and a generic model of execution is examined. A novel classification scheme for executable attack payloads is presented which allows for characterisation of executable payloads and facilitates vulnerability and threat assessments, and intrusion detection capability assessments for intrusion detection systems. An intrusion detection capability assessment may be utilised to determine whether or not a deployed system is able to detect a specific attack and to identify requirements for intrusion detection functionality for the development of new detection methods. Two novel detection methods are presented capable of detecting new and previously unseen executable attack payloads. The detection methods are capable of identifying and enumerating the executable payload’s interactions with the operating system on the targeted host at the time of compromise. The detection methods are further validated using real world data including executable payload attacks.
Resumo:
Boards of directors are thought to provide access to a wealth of knowledge and resources for the companies they serve, and are considered important to corporate governance. Under the Resource Based View (RBV) of the firm (Wernerfelt, 1984) boards are viewed as a strategic resource available to firms. As a consequence there has been a significant research effort aimed at establishing a link between board attributes and company performance. In this thesis I explore and extend the study of interlocking directorships (Mizruchi, 1996; Scott 1991a) by examining the links between directors’ opportunity networks and firm performance. Specifically, I use resource dependence theory (Pfeffer & Salancik, 1978) and social capital theory (Burt, 1980b; Coleman, 1988) as the basis for a new measure of a board’s opportunity network. I contend that both directors’ formal company ties and their social ties determine a director’s opportunity network through which they are able to access and mobilise resources for their firms. This approach is based on recent studies that suggest the measurement of interlocks at the director level, rather than at the firm level, may be a more reliable indicator of this phenomenon. This research uses publicly available data drawn from Australia’s top-105 listed companies and their directors in 1999. I employ Social Network Analysis (SNA) (Scott, 1991b) using the UCINET software to analyse the individual director’s formal and social networks. SNA is used to measure a the number of ties a director has to other directors in the top-105 company director network at both one and two degrees of separation, that is, direct ties and indirect (or ‘friend of a friend’) ties. These individual measures of director connectedness are aggregated to produce a board-level network metric for comparison with measures of a firm’s performance using multiple regression analysis. Performance is measured with accounting-based and market-based measures. Findings indicate that better-connected boards are associated with higher market-based company performance (measured by Tobin’s q). However, weaker and mostly unreliable associations were found for accounting-based performance measure ROA. Furthermore, formal (or corporate) network ties are a stronger predictor of market performance than total network ties (comprising social and corporate ties). Similarly, strong ties (connectedness at degree-1) are better predictors of performance than weak ties (connectedness at degree-2). My research makes four contributions to the literature on director interlocks. First, it extends a new way of measuring a board’s opportunity network based on the director rather than the company as the unit of interlock. Second, it establishes evidence of a relationship between market-based measures of firm performance and the connectedness of that firm’s board. Third, it establishes that director’s formal corporate ties matter more to market-based firm performance than their social ties. Fourth, it establishes that director’s strong direct ties are more important to market-based performance than weak ties. The thesis concludes with implications for research and practice, including a more speculative interpretation of these results. In particular, I raise the possibility of reverse causality – that is networked directors seek to join high-performing companies. Thus, the relationship may be a result of symbolic action by companies seeking to increase the legitimacy of their firms rather than a reflection of the social capital available to the companies. This is an important consideration worthy of future investigation.
Resumo:
Secret-sharing schemes describe methods to securely share a secret among a group of participants. A properly constructed secret-sharing scheme guarantees that the share belonging to one participant does not reveal anything about the shares of others or even the secret itself. Besides the obvious feature which is to distribute a secret, secret-sharing schemes have also been used in secure multi-party computations and redundant residue number systems for error correction codes. In this paper, we propose that the secret-sharing scheme be used as a primitive in a Network-based Intrusion Detection System (NIDS) to detect attacks in encrypted networks. Encrypted networks such as Virtual Private Networks (VPNs) fully encrypt network traffic which can include both malicious and non-malicious traffic. Traditional NIDS cannot monitor encrypted traffic. Our work uses a combination of Shamir's secret-sharing scheme and randomised network proxies to enable a traditional NIDS to function normally in a VPN environment. In this paper, we introduce a novel protocol that utilises a secret-sharing scheme to detect attacks in encrypted networks.
Resumo:
Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Secret-sharing schemes describe methods to securely share a secret among a group of participants. A properly constructed secret-sharing scheme guarantees that the share belonging to one participant does not reveal anything about the shares of others or even the secret itself. Besides being used to distribute a secret, secret-sharing schemes have also been used in secure multi-party computations and redundant residue number systems for error correction codes. In this paper, we propose that the secret-sharing scheme be used as a primitive in a Network-based Intrusion Detection System (NIDS) to detect attacks in encrypted Networks. Encrypted networks such as Virtual Private Networks (VPNs) fully encrypt network traffic which can include both malicious and non-malicious traffic. Traditional NIDS cannot monitor such encrypted traffic. We therefore describe how our work uses a combination of Shamir's secret-sharing scheme and randomised network proxies to enable a traditional NIDS to function normally in a VPN environment.
Resumo:
IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).