97 resultados para Needle biopsy
Resumo:
Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25
Resumo:
Paramedics are at high risk of exposure to infectious diseases because they frequently undertake procedures such as the use and disposal of sharps as components of everyday practice. While the literature demonstrates that the management of sharps is problematic across all health disciplines, there is a paucity of research examining sharps management practices in the Australian pre-hospital paramedic context. This study examines knowledge and practices of sharps control among paramedics in Queensland, Australia. A mail survey focusing on infection control knowledge and practices was sent to all clinical personnel of the Queensland Ambulance Service (QAS) (N = 2274). A total of 1258 surveys were returned, a response rate of 55.3%. Participants responded to 12 true/false statements on the management of sharps and three questions about recapping practices. Most respondents were knowledgeable about the correct management of sharps, with a mean of 11.28 (out of 12, SD = 1.32). When gauging reported practices, more than half (59.1%, n = 736) of participants reported recapping a needle, and 38.5% (n = 479) reported never having done so. These results reflect good knowledge of general management of sharps among respondents, but suggest deficits regarding reported practices. The results suggest that a comprehensive ambulance in-service education programme focusing particularly on sharps management is required. The study highlights the need for further research on sharps management practices in the field, identification of barriers to safe sharps practices in pre-hospital settings, and 'best practice' for translating good sharps management knowledge into practice.
Resumo:
Obesity represents a major health, social and economic burden to many developing and Westernized communities, with the prevalence increasing at a rate exceeding almost all other medical conditions. Despite major recent advances in our understanding of adipose tissue metabolism and dynamics, we still have limited insight into the regulation of adipose tissue mass in humans. Any significant increase in adipose tissue mass requires proliferation and differentiation of precursor cells (preadipocytes) present in the stromo-vascular compartment of adipose tissue. These processes are very complex and an increasing number of growth factors and hormones have been shown to modulate the expression of genes involved in preadipocyte proliferation and differentiation. A number of transcription factors, including the C/EBP family and PP ARy, have been identified as integral to adipose tissue development and preadipocyte differentiation. Together PP ARy and C/EBPa regulate important events in the activation and maintenance of the terminally differentiated phenotype. The ability of PP ARy to increase transcription through its DNA recognition site is dependent on the binding of ligands. This suggests that an endogenous PP ARy ligand may be an important regulator of adipogenesis. Adipose tissue functions as both the major site of energy storage in the body and as an endocrine organ synthesizing and secreting a number of important molecules involved in regulation of energy balance. For optimum functioning therefore, adipose tissue requires extensive vascularization and previous studies have shown that growth of adipose tissue is preceded by development of a microvascular network. This suggests that paracrine interactions between constituent cells in adipose tissue may be involved in both new capillary formation and fat cell growth. To address this hypothesis the work in this project was aimed at (a) further development of a method for inducing preadipocyte differentiation in subcultured human cells; (b) establishing a method for simultaneous isolation and separate culture of both preadipocytes and microvascular endothelial cells from the same adipose tissue biopsies; (c) to determine, using conditioned medium and co-culture techniques, if endothelial cell-derived factors influence the proliferation and/or differentiation of human preadipocytes; and (d) commence characterization of factors that may be responsible for any observed paracrine effects on aspects of human adipogenesis. Major findings of these studies were as follows: (A) Inclusion of either linoleic acid (a long-chain fatty acid reported to be a naturally occurring ligand for PP ARy) or Rosiglitazone (a member of the thiazolidinedione class of insulin-sensitizing drugs and a synthetic PPARy ligand) in differentiation medium had markedly different effects on preadipocyte differentiation. These studies showed that human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation, and that thiazolidinediones and fatty acids may exert their adipogenic and lipogenic effects via different biochemical pathways. It was concluded that Rosiglitazone is a more potent inducer of human preadipocyte differentiation than linoleic acid. (B) A method for isolation and culture of both endothelial cells and preadipocytes from the same adipose tissue biopsy was developed. Adipose-derived microvascular endothelial cells were found to produce factor/s, which enhance both proliferation and differentiation of human preadipocytes. (C) The adipogenic effects of microvascular endothelial cells can be mimicked by exposure of preadipocytes to members of the Fibroblast Growth Factor family, specifically ~-ECGF and FGF-1. (D) Co-culture of human preadipocytes with endothelial cells or exposure of preadipocytes to either ~-ECGF or FGF-1 were found to 'prime' human preadipocytes, during their proliferative phase of growth, for thiazolidinedione-induced differentiation. (E) FGF -1 was not found to be acting as a ligand for PP ARy in this system. Findings from this project represent a significant step forward in our understanding of factors involved in growth of human adipose tissue and may lead to the development of therapeutic strategies aimed at modifying the process. Such strategies would have potential clinical utility in the treatment of obesity and obesity related disorders such as Type II Diabetes.
Resumo:
Prostrate Cancer(PCa)is the most common cause of cancer death amongst Western males. PCa occurs in two distinct stages. In its early stage, growth and development is dependent primarily on male sex hormones (androgens) such as testosterone, although other growth factors have roles maintaining PCa cell survival in this stage. In the later stage of PCa development, growth and.maintenance is independent of androgen stimulation and growth factors including Insulin-like Growth Factor -1 (IGf.:·l) and Epidermal Growth Factor (EGF) are thought to have more crucial roles in cell survival and PCa progression. PCa, in its late stages, is highly aggressive and metastatic, that is, tumorigenic cells migrate from the primary site of the body (prostate) and travel via the systemic and lymphatic circulation, residing and colonising in the bone, lymph node, lung, and in more rare cases, the brain. Metastasis involves both cell migration and tissue degradation activities. The degradation of the extracellular matrix (ECM), the tissue surrounding the organ, is mediated in part by members of a family of 26 proteins called the Matrix Metalloproteases (MMPs), whilst ceil adhesion molecules, of which proteins known as Integrins are included, mediate ce11 migration. A family of proteins known as the ADAMs (A Disintegrin . And Metalloprotease domain) were a recently characterised family at the commencement of this study and now comprise 34 members. Because of their dual nature, possessing an active metaiioprotease domain, homologous to that of the MMPs, and an integrin-binding domain capable of regulating cell-cell and cell-ECM contacts, it was thought likely that members of the ADAMs family may have implications for the progression of aggressive cancers such as those ofthe prostate. This study focussed on two particular ADAMs -9 and -10. ADAM-9 has an active metalloprotease domain, which has been shown to degrade constituents of the ECM, including fibronectin, in vitro. It also has an integrin-binding capacity through association with key integrins involved in PCa progression, such as a6~1. ADAM-10 has no such integrin binding activities, but its bovine orthologue, MADM, is able to degrade coHagen type IV, a major component of basement membranes. It is likely human ADAM-10 has the same activity. It is also known to cleave Ll -a protein involved in cell anchorage activities - and collagen type XVII - which is a principal component of the hemidesmosomes of cellular tight junctions. The cleavage of these proteins enables the cell to be released from the surrounding environment and commence migratory activities, as required in metastasis. Previous studies in this laboratory showed the mRNA expression of the five ADAMs -9,- 10, -11, -15 and -17 in PCa cell lines, characteristic of androgen-dependent and androgen independent disease. These studies were furthered by the characterisation of AD AM-9, -10 and -17 mRNA regulation by Dihydrotestosterone (DHT) in the androgen-responsive cell line (LNCaP). ADAM-9 and -10 mRNA levels were elevated in response to DHT stimulation. Further to these observations, the expression of ADAM-9 and -10 was shown in primary prostate biopsies from patients with PCa. ADAM-1 0 was expressed in the cytoplasm and on the ceH membrane in epithelial and basal cells ofbenign prostate glands, but in high-grade PCa glands, ADAM-I 0 expression was localised to the nucleus and its expression levels appeared to be elevated when compared to low-grade PCa glands. These studies provided a strong background for the hypothesis that ADAM-9 and -10 have key roles in the development ofPCa and provided a basis for further studies.The aims of this study were to: 1) characterise the expression, localisation and levels, of ADAM-9 and -10 mRNA and protein in cell models representing characteristics of normal through androgen-dependent to androgen-independent PCa, as well as to expand the primary PCa biopsy data for ADAM-9 and ADAM-10 to encompass PCa bone metastases 2) establish an in vitro cell system, which could express elevated levels of ADAM-1 0 so that functional cell-based assays such as cell migration, invasion and attachment could be carried out, and 3) to extend the previous hormonal regulation data, to fully characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in the hormonal/growth factor responsive cell line LNCaP. For aim 1 (expression of ADAM-9 and -10 mRNA and protein), ADAM-9 and -10 mRNA were characterised by R T -PCR, while their protein products were analysed by Western blot. Both ADAM-9 and -10 mRNA and protein were expressed at readily detectable levels across progressively metastatic PCa cell lines model that represent characteristics of low-grade,. androgen-dependent (LNCaP and C4) to high-grade, androgen-independent (C4-2 and C4-2B) PCa. When the non-tumorigenic prostate cell line RWPE-1 was compared with the metastatic PCa cell line PC-3, differential expression patterns were seen by Western blot analysis. For ADAM-9, the active form was expressed at higher levels in RWPE-1, whilst subcellular fractionation showed that the active form of ADAM-9 was predominantly located in the cell nucleus. For ADAM-I 0, in both of the cell Jines, a nuclear specific isoform of the mature, catalytically active ADAM-I 0 was found. This isoforrn differed by -2 kDa in Mr (smaller) than the cytoplasmic specific isoform. Unprocessed ADAM-I 0 was readily detected in R WPE-1 cell lines but only occasionally detected in PC-3 cell lines. Immunocytochemistry using ADAM-9 and -10 specific antibodies confirmed nuclear, cytoplasmic and membrane expression of both ADAMs in these two cell lines. To examine the possibility of ADAM-9 and -10 being shed into the extracellular environment, membrane vesicles that are constitutively shed from the cell surface and contain membrane-associated proteins were collected from the media of the prostate cell lines RWPE-1, LNCaP and PC-3. ADAM-9 was readily detectable in RWPE- 1 and LNCaP cell membrane vesicles by Western blot analysis, but not in PC-3 cells, whilst the expression of ADAM-I 0 was detected in shed vesicles from each of these prostate cell lines. By Laser Capture Microdissection (LCM), secretory epithelial cells of primary prostate gland biopsies were isolated from benign and malignant glands. These secretory cells, by Western blot analysis, expressed similar Mr bands for ADAM-9 and -10 that were found in PCa cell lines in vitro, indicating that the nuclear specific isoforrn of ADAM-I 0 was present in PCa primary tumours and may represent the predominantly nuclear form of ADAM-I 0 expression, previously shown in high-grade PCa by immunohistochemistry (IHC). ADAM-9 and -10 were also examined by IHC in bone metastases taken from PCa patients at biopsy. Both ADAMs could be detected at levels similar to those shown for Prostate Specific Antigen (PSA) in these biopsies. Furthermore, both ADAM-9 and -10 were predominantly membrane- bound with occasional nuclear expression. For aim 2, to establish a cell system that over-expressed levels of ADAM-10, two fulllength ADAM-I 0 mammalian expression vectors were constructed; ADAM-I 0 was cloned into pcDNA3.1, which contains a CMV promoter, and into pMEP4, containing an inducible metallothionine promoter, whose activity is stimulated by the addition of CdC}z. The efficiency of these two constructs was tested by way of transient transfection in the PCa cell line PC-3, whilst the pcDNA3.1 construct was also tested in the RWPE-1 prostate cell line. Resultant Western blot analysis for all transient transfection assays showed that levels of ADAM-I 0 were not significantly elevated in any case, when compared to levels of the housekeeping gene ~-Tubulin, despite testing various levels of vector DNA, and, for pMEP4, the induction of the transfected cell system with different degrees of stimulation with CdCh to activate the metallothionine promoter post-transfection. Another study in this laboratory found similar results when the same full length ADAM-10 sequence was cloned into a Green Fluorescent Protein (GFP) expressing vector, as no fluorescence was observed by means of transient tran sfection in the same, and other, PCa cell lines. It was hypothesised that the Kozak sequence included in the full-length construct (human ADAMI 0 naturally occurring sequence) is not strong enough to initiate translation in an artificial system, in cells, which, as described in Aim 1, are already expressing readily detectable levels of endogenous ADAM-10. As a result, time constraints prevented any further progress with Aim 2 and functional studies including cell attachment, invasion and migration were unable to be explored. For Aim 3, to characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in LNCaP cells, the levels of ADAM-9 and -10 mRNA were not stimulated by DHT or IGF-I alone, despite our previous observations that initially characterised ADAM-9 and -10 mRNA as being responsive to DHT. However, IGF-1 in synergy with DHT did significantly elevate mRNA levels ofboth ADAMs. In the case of ADAM-9 and -10 protein, the same trends of stimulation as found at the rnRNA level were shown by Western blot analysis when ADAM-9 and -10 signal intensity was normalised with the housekeeping protein ~-Tubulin. For EGF treatment, both ADAM-9 and -10 mRNA and protein levels were significantly elevated, and further investigation vm found this to be the case for each of these ADAMs proteins in the nuclear fractions of LNCaP cells. These studies are the first to describe extensively, the expression and hormonal/growth factor regulation of two members of the ADAMs family ( -9 and -1 0) in PCa. These observations imply that the expression of ADAM-9 and -10 have varied roles in PCa whilst it develops from androgen-sensitive (early stage disease), through to an androgeninsensitive (late-stage), metastatic disease. Further studies are now required to investigate the several key areas of focus that this research has revealed, including: • Investigation of the cellular mechanisms that are involved in actively transporting the ADAMs to the cell's nuclear compartment and the ADAMs functional roles in the cell nucleus. • The construction of a full-length human ADAM-10 mammalian expression construct with the introduction of a new Kozak sequence, that elevates ADAM-I 0 expression in an in vitro cell system are required, so that functional assays such as cell invasion, migration and attachment may be carried out to fmd the functional consequences of ADAM expression on cellular behaviour. • The regulation studies also need to be extended by confirming the preliminary observations that the nuclear levels of ADAMs may also be elevated by hormones and growth factors such as DHT, IGF-1 and EGF, as well as the regulation of levels of plasma membrany vesicle associated ADAM expression. Given the data presented in this study, it is likely the ADAMs have differential roles throughout the development of PCa due to their differential cellular localisation and synergistic growth-factor regulation. These observations, along with those further studies outlined above, are necessary in identifying these specific components ofPCa metastasis to which the ADAMs may contribute.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
Heart damage caused by acute myocardial infarction (AMI) is a leading cause of death and disability in Australia. Novel therapies are still required for the treatment of this condition due to the poor reparative ability of the heart. As such, cellular therapies that assist in the recovery of heart muscle are of great current interest. Culture expanded mesenchymal stem cells (MSC) represent a stem and progenitor cell population that has been shown to promote tissue recovery in pre-clinical studies of AMI. For MSC-based therapies in the clinic, an intravenous route of administration would ideally be used due to the low cost, ease of delivery and relative safety. The study of MSC migration is therefore clinically relevant for a minimally invasive cell therapy to promote regeneration of damaged tissue. C57BL/6, UBI-GFP-BL/6 and CD44-/-/GFP+/+ mice were utilised to investigate mMSC migration. To assist in murine models of MSC migration, a novel method was used for the isolation of murine MSC (mMSC). These mMSC were then expanded in culture and putative mMSC were positive for Sca-1, CD90.2, and CD44 and were negative for CD45 and CD11b. Furthermore, mMSC from C57BL/6 and UBI-GFP-BL/6 mice were shown to differentiate into cells of the mesodermal lineage. Cells from CD44-/-/GFP+/+ mice were positive for Sca-1 and CD90.2, and negative for CD44, CD45 and CD11b however, these cells were unable to differentiate into adipocytes and chondrocytes and express lineage specific genes, PLIN and ACAN. Analysis of mMSC chemokine receptor (CR) expression showed that although mMSC do express chemokine receptors, (including those specific for chemokines released after AMI), these were low or undetectable by mRNA. However, protein expression could be detected, which was predominantly cytoplasmic. It was further shown that in both healthy (unperturbed) and inflamed tissues, mMSC had very little specific migration and engraftment after intravenous injection. To determine if poor mMSC migration was due to the inability of mMSC to respond to chemotactic stimuli, chemokine expression in bone marrow, skin injury and hearts (healthy and after AMI) was analysed at various time points by quantitative real-time PCR (qRT PCR). Many chemokines were up-regulated after skin biopsy and AMI, but the highest acute levels were found for CXCL12 and CCL7. Due to their high expression in infarcted hearts, the chemokines CXCL12 and CCL7 were tested for their effect on mMSC migration. Despite CR expression at both protein and mRNA levels, migration in response to CXCL12 and CCL7 was low in mMSC cultured on Nunclon plastic. A novel tissue culture plastic technology (UpCellTM) was then used that allowed gentle non-enzymatic dissociation of mMSC, thus preserving surface expression of the CRs. Despite this the in vitro data indicated that CXCL12 fails to induce significant migration ability of mMSC, while CCL7 induces significant, but low-level migration. We speculated this may be because of low levels of surface expression of chemokine receptors. In a strategy to increase cell surface expression of mMSC chemokine receptors and enhance their in vitro and in vivo migration capacity, mMSC were pre-treated with pro-inflammatory cytokines. Increased levels of both mRNA and surface protein expression were found for CRs by pre-treating mMSC with pro-inflammatory cytokines including TNF-á, IFN-ã, IL-1á and IL-6. Furthermore, the chemotactic response of mMSC to CXCL12 and CCL7 was significantly higher with these pretreated cells. Finally, the effectiveness of this type of cell manipulation was demonstrated in vivo, where mMSC pre-treated with TNF-á and IFN-ã showed significantly increased migration in skin injury and AMI models. Therefore this thesis has demonstrated, using in vitro and in vivo models, the potential for prior manipulation of MSC as a possible means for increasing the utility of intravenously delivery for MSC-based cellular therapies.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and non-contact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
Survivin is a member of the family of proteins known as 'inhibitors of apoptosis proteins'. Survivin has a role in cellular decisions concerning division and survival and is frequently expressed in neoplastic cells. The aim of the present study was to investigate immunohistochemically the expression of survivin in normal canine tissues and in canine lymphoma. A representative range of fetal and adult normal tissues as well as biopsy samples from dogs with lymphoma were assembled in tissue arrays. The lymphomas were classified according to the revised Kiel and to the Revised European American Lymphoma - World Health Organization (REAL-WHO) schemes. Polyclonal and monoclonal antisera cross-reactive with canine survivin identified cytoplasmic expression of the molecule in a broad range of normal canine cells. The same reagents demonstrated cytoplasmic labelling of more than 5% of cells in all 83 lymphoma samples tested with polyclonal antiserum and in 67 of 82 (82%) of samples tested with monoclonal antiserum. Survivin was expressed by a wide range of canine lymphoma subtypes, but the expression of this molecule in normal canine tissues must be considered if novel therapies targeting survivin are applied to the management of canine lymphoma. © 2010 Elsevier Ltd.
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
Bananas are one of the world�fs most important crops, serving as a staple food and an important source of income for millions of people in the subtropics. Pests and diseases are a major constraint to banana production. To prevent the spread of pests and disease, farmers are encouraged to use disease�] and insect�]free planting material obtained by micropropagation. This option, however, does not always exclude viruses and concern remains on the quality of planting material. Therefore, there is a demand for effective and reliable virus indexing procedures for tissue culture (TC) material. Reliable diagnostic tests are currently available for all of the economically important viruses of bananas with the exception of Banana streak viruses (BSV, Caulimoviridae, Badnavirus). Development of a reliable diagnostic test for BSV is complicated by the significant serological and genetic variation reported for BSV isolates, and the presence of endogenous BSV (eBSV). Current PCR�] and serological�]based diagnostic methods for BSV may not detect all species of BSV, and PCR�]based methods may give false positives because of the presence of eBSV. Rolling circle amplification (RCA) has been reported as a technique to detect BSV which can also discriminate between episomal and endogenous BSV sequences. However, the method is too expensive for large scale screening of samples in developing countries, and little information is available regarding its sensitivity. Therefore the development of reliable PCR�]based assays is still considered the most appropriate option for large scale screening of banana plants for BSV. This MSc project aimed to refine and optimise the protocols for BSV detection, with a particular focus on developing reliable PCR�]based diagnostics Initially, the appropriateness and reliability of PCR and RCA as diagnostic tests for BSV detection were assessed by testing 45 field samples of banana collected from nine districts in the Eastern region of Uganda in February 2010. This research was also aimed at investigating the diversity of BSV in eastern Uganda, identifying the BSV species present and characterising any new BSV species. Out of the 45 samples tested, 38 and 40 samples were considered positive by PCR and RCA, respectively. Six different species of BSV, namely Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), Banana streak OL virus (BSOLV), Banana streak UA virus (BSUAV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), were detected by PCR and confirmed by RCA and sequencing. No new species were detected, but this was the first report of BSMYV in Uganda. Although RCA was demonstrated to be suitable for broad�]range detection of BSV, it proved time�]consuming and laborious for identification in field samples. Due to the disadvantages associated with RCA, attempts were made to develop a reliable PCR�]based assay for the specific detection of episomal BSOLV, Banana streak GF virus (BSGFV), BSMYV and BSIMV. For BSOLV and BSGFV, the integrated sequences exist in rearranged, repeated and partially inverted portions at their site of integration. Therefore, for these two viruses, primers sets were designed by mapping previously published sequences of their endogenous counterparts onto published sequences of the episomal genomes. For BSOLV, two primer sets were designed while, for BSGFV, a single primer set was designed. The episomalspecificity of these primer sets was assessed by testing 106 plant samples collected during surveys in Kenya and Uganda, and 33 leaf samples from a wide range of banana cultivars maintained in TC at the Maroochy Research Station of the Department of Employment, Economic Development and Innovation (DEEDI), Queensland. All of these samples had previously been tested for episomal BSV by RCA and for both BSOLV and BSGFV by PCR using published primer sets. The outcome from these analyses was that the newly designed primer sets for BSOLV and BSGFV were able to distinguish between episomal BSV and eBSV in most cultivars with some B�]genome component. In some samples, however, amplification was observed using the putative episomal�]specific primer sets where episomal BSV was not identified using RCA. This may reflect a difference in the sensitivity of PCR compared to RCA, or possibly the presence of an eBSV sequence of different conformation. Since the sequences of the respective eBSV for BSMYV and BSIMV in the M. balbisiana genome are not available, a series of random primer combinations were tested in an attempt to find potential episomal�]specific primer sets for BSMYV and BSIMV. Of an initial 20 primer combinations screened for BSMYV detection on a small number of control samples, 11 primers sets appeared to be episomal�]specific. However, subsequent testing of two of these primer combinations on a larger number of control samples resulted in some inconsistent results which will require further investigation. Testing of the 25 primer combinations for episomal�]specific detection of BSIMV on a number of control samples showed that none were able to discriminate between episomal and endogenous BSIMV. The final component of this research project was the development of an infectious clone of a BSV endemic in Australia, namely BSMYV. This was considered important to enable the generation of large amounts of diseased plant material needed for further research. A terminally redundant fragment (.1.3 �~ BSMYV genome) was cloned and transformed into Agrobacterium tumefaciens strain AGL1, and used to inoculate 12 healthy banana plants of the cultivars Cavendish (Williams) by three different methods. At 12 weeks post�]inoculation, (i) four of the five banana plants inoculated by corm injection showed characteristic BSV symptoms while the remaining plant was wilting/dying, (ii) three of the five banana plants inoculated by needle�]pricking of the stem showed BSV symptoms, one plant was symptomless while the remaining had died and (iii) both banana plants inoculated by leaf infiltration were symptomless. When banana leaf samples were tested for BSMYV by PCR and RCA, BSMYV was confirmed in all banana plants showing symptoms including those were wilting and/or dying. The results from this research have provided several avenues for further research. By completely sequencing all variants of eBSOLV and eBSGFV and fully sequencing the eBSIMV and eBSMYV regions, episomal BSV�]specific primer sets for all eBSVs could potentially be designed that could avoid all integrants of that particular BSV species. Furthermore, the development of an infectious BSV clone will enable large numbers of BSVinfected plants to be generated for the further testing of the sensitivity of RCA compared to other more established assays such as PCR. The development of infectious clones also opens the possibility for virus induced gene silencing studies in banana.