214 resultados para Nano particles
Resumo:
An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different values of volume fraction in the range 0 0.2 , Rayleigh number in the range 9 1 Ra 10 and the nano particles with different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing trend of heat transfer was observed due to increase in the volume fraction of nanofluids.
Resumo:
This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.
Resumo:
Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
A method for producing metal oxide particles having nano-sized grains is disclosed. A solution of metal cations is mixed with surfactant under conditions such that surfactant micelles are formed. This mixture is then heated to form the metal oxide particles; this heating step removing the surfactant, forming the metal oxide and creating the pore structure of the particles. The pore structures are disordered. This method is particularly advantageous for production of complex (multi-component) metal oxides in which the different atomic species are homogeneously dispersed.
Resumo:
Biopharmaceuticals have been shown to have low delivery and transformation efficiencies. To over come this, larger doses are administered in order to obtain the desired response which may lead to toxicity and drug resistance. This paper reports upon a continuous particle production method utilizing surface acoustic wave atomization to reliably produce micro and nanoparticles with physical characteristics to facilitate the cellular uptake of biopharmaceuticals. By producing particles of an optimal size for cellular uptake, the efficacy and specificity of drug loaded nanoparticles will be increased. Better delivery methods will result in dosage reduction (hence lower costs per dose), reduced toxicity, and reduced problems associated with multidrug resistance due to over dosing.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, and it quantifies school children’s personal exposure to UF particles, in terms of number, using Philips Aerasense Nano Tracers (NTs). This study is being conducted in conjunction with the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)” project, which aims to determine the relationship between exposure to traffic related UF particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20 Home.htm). To achieve this, air quality and some health data are being collected at 25 schools within the Brisbane Metropolitan Area in Australia over two years. The school children’s personal exposure to UF particles in the first 17 schools are presented here. These schools were tested between Oct 2010 and Dec 2011. Data collection is expected to be complete by mid 2012.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, especially for children (Mejía et al. 2011). Most research efforts in the past have investigated particle mass concentration and only a limited number of studies have been conducted to quantify other particle metrics, such as particle number, in the classrooms and school microenvironment in general (Diapouli et al. 2008; Guo et al. 2008; Weichenthal et al. 2008; Mullen et al. 2011).
Resumo:
A higher degree of mineralization is found within scaffold groups implanted with cells compared to scaffold alone demonstrating greater bone regenerative potential of cell-scaffold constructs Tissue engineered bone analysed using ESEM and SAXS demonstrates bone formation within the scaffold to be preferentially aligned around the scaffold struts. The mineral particles are not shown to orientate around the osteons within the native bone.
Resumo:
Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.
Resumo:
A method of producing particles having nano-sized grains comprises the steps of: (a) prepg. a soln. contg. one or more metal cations; (b) mixing the soln. from step (a) with one or more surfactants to form a surfactant/liq. mixt. and (c) heating the mixt. from step (b) above to form the particles. [on SciFinder(R)]
Resumo:
A method of producing particles having nano-sized grains comprises the steps of: (a) prepg. a soln. contg. one or more metal cations; (b) mixing the soln. from step (a) with one or more surfactants to form a surfactant/liq. mixt. and (c) heating the mixt. from step (b) above to form the particles. [on SciFinder(R)]
Resumo:
Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.
Resumo:
Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.