569 resultados para Multi-robot cooperation
Resumo:
This paper describes the development of small low-cost cooperative robots for sustainable broad-acre agriculture to increase broad-acre crop production and reduce environmental impact. The current focus of the project is to use robotics to deal with resistant weeds, a critical problem for Australian farmers. To keep the overall system affordable our robot uses low-cost cameras and positioning sensors to perform a large scale coverage task while also avoiding obstacles. A multi-robot coordinator assigns parts of a given field to individual robots. The paper describes the modification of an electric vehicle for autonomy and experimental results from one real robot and twelve simulated robots working in coordination for approximately two hours on a 55 hectare field in Emerald Australia. Over this time the real robot 'sprayed' 6 hectares missing 2.6% and overlapping 9.7% within its assigned field partition, and successfully avoided three obstacles.
Resumo:
This paper presents a full system demonstration of dynamic sensorbased reconfiguration of a networked robot team. Robots sense obstacles in their environment locally and dynamically adapt their global geometric configuration to conform to an abstract goal shape. We present a novel two-layer planning and control algorithm for team reconfiguration that is decentralised and assumes local (neighbour-to-neighbour) communication only. The approach is designed to be resource-efficient and we show experiments using a team of nine mobile robots with modest computation, communication, and sensing. The robots use acoustic beacons for localisation and can sense obstacles in their local neighbourhood using IR sensors. Our results demonstrate globally-specified reconfiguration from local information in a real robot network, and highlight limitations of standard mesh networks in implementing decentralised algorithms.
Resumo:
This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.
Resumo:
This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Accurately quantifying total greenhouse gas emissions (e.g. methane) from natural systems such as lakes, reservoirs and wetlands requires the spatial-temporal measurement of both diffusive and ebullitive (bubbling) emissions. Traditional, manual, measurement techniques provide only limited localised assessment of methane flux, often introducing significant errors when extrapolated to the whole-of-system. In this paper, we directly address these current sampling limitations and present a novel multiple robotic boat system configured to measure the spatiotemporal release of methane to atmosphere across inland waterways. The system, consisting of multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent operation, enables scientists to remotely evaluate the performance of sampling and modelling algorithms for real-world process quantification over extended periods of time. This paper provides an overview of the multi-robot sampling system including the vehicle and gas sampling unit design. Experimental results are shown demonstrating the system’s ability to autonomously navigate and implement an exploratory sampling algorithm to measure methane emissions on two inland reservoirs.
Resumo:
In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
The GuRoo is a 1.2 m tall, 23 degree of freedom humanoid constructed at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRoo project is the development of appropriate learning strategies for control and coordination of the robot's many joints. The development of learning strategies is seen as a way to side-step the inherent intricacy of modeling a multi-DOF biped robot. This paper outlines the approach taken to generate an appropriate control scheme for the joints of the GuRoo. The paper demonstrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-forward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on the CMAC architecture. Results from tests on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe the work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot SLAM system. The control system is hybrid in nature and tightly coupled with the SLAM system; it uses a combination of high and low level deliberative and reactive control processes to perform obstacle avoidance, exploration, global navigation and recharging, and draws upon the map learning and localization capabilities of the SLAM system. The effectiveness of this hybrid, multi-level approach was evaluated in the context of a delivery robot scenario. Over a period of two weeks the robot performed 1143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), travelled a total distance of more than 40km, and recharged autonomously a total of 23 times. In this paper we describe the combined control and SLAM system and discuss insights gained from its successful application in a real-world context.
Resumo:
This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.