469 resultados para Milling (Metal-work)
Resumo:
The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.
Resumo:
Density functional calculations of the electronic band structure for superconducting and semi-conducting metal hexaborides are compared using a consistent suite of assumptions and with emphasis on the physical implications of computed models. Spin polarization enhances mathematical accuracy of the functional approximations and adds significant physical meaning to model interpretation. For YB6 and LaB6, differences in alpha and beta projections occur near the Fermi energy. These differences are pronounced for superconducting hexaborides but do not occur for other metal hexaborides.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.
Resumo:
The metal borides, in particular the diborides and hexaborides, contain stoichiometric forms that include insulators, semiconductors and superconductors. In addition, their end-member structures have high symmetry and two atoms although, in general, substitution(s) of multi-valent ions into the metal site occurs consistent with Vegard’s law. These characteristics allow for fundamental comparison of important physical properties such as superconductivity and insulation within a relatively simple structure type. Our early work1,2 has demonstrated this for the hexaborides and this work compares similar attributes across a broader suite of boride structures. In all cases, theoretical calculations are referenced to structures determined via high resolution neutron or X-ray diffraction experiments.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
Process modelling is an integral part of any process industry. Several sugar factory models have been developed over the years to simulate the unit operations. An enhanced and comprehensive milling process simulation model has been developed to analyse the performance of the milling train and to assess the impact of changes and advanced control options for improved operational efficiency. The developed model is incorporated in a proprietary software package ‘SysCAD’. As an example, the milling process model has been used to predict a significant loss of extraction by returning the cush from the juice screen before #3 mill instead of before #2 mill as is more commonly done. Further work is being undertaken to more accurately model extraction processes in a milling train, to examine extraction issues dynamically and to integrate the model into a whole factory model.
Resumo:
This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.
Resumo:
It is rare to find an anthology that realizes the possibilities of the form. We tend to regard our edited collections as lesser siblings, and forget their special value. But at times, a subject seems to require an edited collection much more than it does a classic monograph. So it is with the subject showcased here, which concerns the global circulation, performance and consumption of heavy metal. This is a relatively new and emerging body of work, hitherto scattered disparately in the broader popular music studies, but quickly gaining status as a “studies” with the establishment of a global conference, a journal, and publication of this anthology, all in recent years. Metal Rules the Globe took the editors’ a decade to compile. That they have thought deeply about how they want the collection to speak shows through in the book’s thoughtful arrangement and design, and in the way in which they draw on the contributions herein to develop for the field a research agenda that will take it forward...
Resumo:
This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.
Resumo:
This work reports on the fabrication of a superhydrophobic nylon textile based on the organic charge transfer complex CuTCNAQ (TCNAQ = 11,11,12,12-tetracyanoanthraquinodimethane). The nylon fabric that is metallized with copper undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro and nanoscale roughness that is required for the Cassie-Baxter state thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterised with SEM, FT-IR and XPS spectroscopy and investigated for its ability to separate oil and water in two modes, namely under gravity and as an absorbent. It is found that the fabric can separate dichloromethane, olive oil and crude oil from water and in fact reduce the water content of the oil during the separation process. The fabric is reusable and tolerant to conditions such as seawater, hydrochloric acid and extensive time periods on the shelf. Given that CuTCNAQ is a copper based semiconductor may also open up the possibility of other applications in areas such as photocatalysis and antibacterial applications.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.