44 resultados para Metal ions -- Absorption and adsorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and a-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also. Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly. Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion Ag-2(L-H)(+) where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I) (C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.