88 resultados para Medicinal herb
Resumo:
For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds
Resumo:
Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.
Resumo:
Hydrogels provide a 3-dimensional network for embedded cells and offer promise for cartilage tissue engineering applications. Nature-derived hydrogels, including alginate, have been shown to enhance the chondrocyte phenotype but are variable and not entirely controllable. Synthetic hydrogels, including polyethylene glycol (PEG)-based matrices, have the advantage of repeatability and modularity; mechanical stiffness, cell adhesion, and degradability can be altered independently. In this study, we compared the long-term in vitro effects of different hydrogels (alginate and Factor XIIIa-cross-linked MMP-sensitive PEG at two stiffness levels) on the behavior of expanded human chondrocytes and the development of construct properties. Monolayer-expanded human chondrocytes remained viable throughout culture, but morphology varied greatly in different hydrogels. Chondrocytes were characteristically round in alginate but mostly spread in PEG gels at both concentrations. Chondrogenic gene (COL2A1, aggrecan) expression increased in all hydrogels, but alginate constructs had much higher expression levels of these genes (up to 90-fold for COL2A1), as well as proteoglycan 4, a functional marker of the superficial zone. Also, chondrocytes expressed COL1A1 and COL10A1, indicative of de-differentiation and hypertrophy. After 12 weeks, constructs with lower polymer content were stiffer than similar constructs with higher polymer content, with the highest compressive modulus measured in 2.5% PEG gels. Different materials and polymer concentrations have markedly different potency to affect chondrocyte behavior. While synthetic hydrogels offer many advantages over natural materials such as alginate, they must be further optimized to elicit desired chondrocyte responses for use as cartilage models and for development of functional tissue-engineered articular cartilage.