525 resultados para Medical Physics
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.
Resumo:
Preterm infants have an increased risk of low bone mass and subsequent fracture due to limited bone mass accretion in utero and a greater need for bone nutrients. The diagnosis of ostepeonia of prematurity remains difficult as there is no sctreening test which is both sensitive and specific.
Resumo:
Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.
Resumo:
Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.
Resumo:
The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.
Resumo:
The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.
Resumo:
Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have tri-faceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module.---------- Methods: That this simple collimator model can produce spatially and dosimetrically accurate micro-collimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms.---------- Results: Monte Carlo dose calculations for on- and off-axis fields are shown to produce good agreement with experimental values, even upon close examination of the penumbrae.--------- Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.