43 resultados para Mandibular complete denture
Resumo:
Several investigators have recently proposed classification schemes for stratospheric dust particles [1-3]. In addition, extraterrestrial materials within stratospheric dust collections may be used as a measure of micrometeorite flux [4]. However, little attention has been given to the problems of the stratospheric collection as a whole. Some of these problems include: (a) determination of accurate particle abundances at a given point in time; (b) the extent of bias in the particle selection process; (c) the variation of particle shape and chemistry with size; (d) the efficacy of proposed classification schemes and (e) an accurate determination of physical parameters associated with the particle collection process (e.g. minimum particle size collected, collection efficiency, variation of particle density with time). We present here preliminary results from SEM, EDS and, where appropriate, XRD analysis of all of the particles from a collection surface which sampled the stratosphere between 18 and 20km in altitude. Determinations of particle densities from this study may then be used to refine models of the behavior of particles in the stratosphere [5].
Resumo:
Speaker diarization determines instances of the same speaker within a recording. Extending this task to a collection of recordings for linking together segments spoken by a unique speaker requires speaker linking. In this paper we propose a speaker linking system using linkage clustering and state-of-the-art speaker recognition techniques. We evaluate our approach against two baseline linking systems using agglomerative cluster merging (AC) and agglomerative clustering with model retraining (ACR). We demonstrate that our linking method, using complete-linkage clustering, provides a relative improvement of 20% and 29% in attribution error rate (AER), over the AC and ACR systems, respectively.
Speaker attribution of multiple telephone conversations using a complete-linkage clustering approach
Resumo:
In this paper we propose and evaluate a speaker attribution system using a complete-linkage clustering method. Speaker attribution refers to the annotation of a collection of spoken audio based on speaker identities. This can be achieved using diarization and speaker linking. The main challenge associated with attribution is achieving computational efficiency when dealing with large audio archives. Traditional agglomerative clustering methods with model merging and retraining are not feasible for this purpose. This has motivated the use of linkage clustering methods without retraining. We first propose a diarization system using complete-linkage clustering and show that it outperforms traditional agglomerative and single-linkage clustering based diarization systems with a relative improvement of 40% and 68%, respectively. We then propose a complete-linkage speaker linking system to achieve attribution and demonstrate a 26% relative improvement in attribution error rate (AER) over the single-linkage speaker linking approach.
Resumo:
Approximately 2500 fly species comprise the Sarcophagidae family worldwide. The complete mitochondrial genome of the carrion-breeding, forensically important Sarcophaga impatiens Walker (Diptera: Sarcophagidae) from Australia was sequenced. The 15,169 bp circular genome contains the 37 genes found in a typical Metazoan genome: 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. It also contains one non-coding A+T-rich region. The arrangement of the genes was the same as that found in the ancestral insect. All the protein initiation codons are ATN, except for cox1 that begins with TCG (encoding S). The 22 tRNA anticodons of S. impatiens are consistent with those observed in Drosophila yakuba, and all form the typical cloverleaf structure, except for tRNA-Ser(AGN) that lacks the DHU arm. The mitochondrial genome of Sarcophaga presented will be valuable for resolving phylogenetic relationships within the family Sarcophagidae and the order Diptera, and could be used to identify favourable genetic markers for species identifications for forensic purposes.
Resumo:
An influenza virus-inspired polymer mimic nanocarrier was used to deliver siRNA for specific and near complete gene knockdown of an osteoscarcom cell line (U-2SO). The polymer was synthesized by single-electron transfer living radical polymerization (SET-LRP) at room temperature to avoid complexities of transfer to monomer or polymer. It was the only LRP method that allowed good block copolymer formation with a narrow molecular weight distribution. At nitrogen to phosphorus (N/P) ratios of equal to or greater than 20 (greater than a polymer concentration of 13.8 μg/mL) with polo-like kinase 1 (PLK1) siRNA gave specific and near complete (>98%) cell death. The polymer further degrades to a benign polymer that showed no toxicity even at polymer concentrations of 200 μg/mL (or N/P ratio of 300), suggesting that our polymer nanocarrier can be used as a very effective siRNA delivery system and in a multiple dose administration. This work demonstrates that with a well-designed delivery device, siRNA can specifically kill cells without the inclusion of an additional clinically used highly toxic cochemotherapeutic agent. Our work also showed that this excellent delivery is sensitive for the study of off-target knockdown of siRNA.
Resumo:
The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.
Resumo:
Rubus yellow net virus (RYNV) was cloned and sequenced from a red raspberry (Rubus idaeus L.) plant exhibiting symptoms of mosaic and mottling in the leaves. Its genomic sequence indicates that it is a distinct member of the genus Badnavirus, with 7932. bp and seven ORFs, the first three corresponding in size and location to the ORFs found in the type member Commelina yellow mottle virus. Bioinformatic analysis of the genomic sequence detected several features including nucleic acid binding motifs, multiple zinc finger-like sequences and domains associated with cellular signaling. Subsequent sequencing of the small RNAs (sRNAs) from RYNV-infected R. idaeus leaf tissue was used to determine any RYNV sequences targeted by RNA silencing and identified abundant virus-derived small RNAs (vsRNAs). The majority of the vsRNAs were 22-nt in length. We observed a highly uneven genome-wide distribution of vsRNAs with strong clustering to small defined regions distributed over both strands of the RYNV genome. Together, our data show that sequences of the aphid-transmitted pararetrovirus RYNV are targeted in red raspberry by the interfering RNA pathway, a predominant antiviral defense mechanism in plants. © 2013.
Resumo:
The complete nucleotide sequence of Subterranean clover mottle virus (SCMoV) genomic RNA has been determined. The SCMoV genome is 4,258 nucleotides in length. It shares most nucleotide and amino acid sequence identity with the genome of Lucerne transient streak virus (LTSV). SCMoV RNA encodes four overlapping open reading frames and has a genome organisation similar to that of Cocksfoot mottle virus (CfMV). ORF1 and ORF4 are predicted to encode single proteins. ORF2 is predicted to encode two proteins that are derived from a -1 translational frameshift between two overlapping reading frames (ORF2a and ORF2b). A search of amino acid databases did not find a significant match for ORF1 and the function of this protein remains unclear. ORF2a contains a motif typical of chymotrypsin-like serine proteases and ORF2b has motifs characteristically present in positive-stranded RNA-dependent RNA polymerases. ORF4 is likely to be expressed from a subgenomic RNA and encodes the viral coat protein. The ORF2a/ORF2b overlapping gene expression strategy used by SCMoV and CfMV is similar to that of the poleroviruses and differ from that of other published sobemoviruses. These results suggest that the sobemoviruses could now be divided into two distinct subgroups based on those that express the RNA-dependent RNA polymerase from a single, in-frame polyprotein, and those that express it via a -1 translational frameshifting mechanism.
Resumo:
For a decade, embedded driving assistance systems were mainly dedicated to the management of short time events (lane departure, collision avoidance, collision mitigation). Recently a great number of projects have been focused on cooperative embedded devices in order to extend environment perception. Handling an extended perception range is important in order to provide enough information for both path planning and co-pilot algorithms which need to anticipate events. To carry out such applications, simulation has been widely used. Simulation is efficient to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new and modular architecture built with the SiVIC simulator and the RTMaps™ multi-sensors prototyping platform. A set of improvements, implemented in SiVIC, are introduced in order to take into account IVC modelling and vehicles’ control. These 2 aspects have been tuned with on-road measurements to improve the realism of the scenarios. The results obtained from a freeway emergency braking scenario are discussed.
Resumo:
The growing gap between engineering practice and engineering has been identified at the level of certain essential skills needed among practising engineers but not developed through the current education system. Coaching approach to learning and teaching has been proven to be an effective way to develop people in the workplace. A pilot coaching program is proposed to engineering students at Queensland University of Technology to enable holistic growth in order to better integrate them to the work force and society at large. The success measures and insights gained will be published on completion of the program. It is hoped that the outcomes of this study will better inform curriculum design and development in the engineering disciplines towards better transition between engineering education and engineering practice.
Resumo:
Establishing the sheep model for translational research of mandible (jaw) segmental defect regeneration. Providing a framework from which additional experimentation and evaluation of novel tissue engineered constructs may be undertaken, compared and collated. For current and future novel approaches to mandible segmental defect reconstruction that may be transferable to the human condition and, ultimately, the operative table.
Resumo:
Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene-nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water-based dispersions of single-layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p-type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n-type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene-based materials.
Resumo:
In this paper, the complete mitochondrial genome of Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini) is reported; a circular molecule of 15,245 bp in size. For A. issoria, genes are arranged in the same order and orientation as the complete sequenced mitochondrial genomes of the other lepidopteran species, except for the presence of an extra copy of tRNAIle(AUR)b in the control region. All protein-coding genes of A. issoria mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that COI gene uses TTG as its initial codon and terminates in a single T residue. All tRNA genes possess the typical clover leaf secondary structure except for tRNASer(AGN), which has a simple loop with the absence of the DHU stem. The sequence, organization and other features including nucleotide composition and codon usage of this mitochondrial genome were also reported and compared with those of other sequenced lepidopterans mitochondrial genomes. There are some short microsatellite-like repeat regions (e.g., (TA)9, polyA and polyT) scattered in the control region, however, the conspicuous macro-repeats units commonly found in other insect species are absent.
Resumo:
We determined the nucleotide sequence of the mitochondrial genome (mtgenome) of Spilonota lechriaspis Meyrick (Lepidoptera: Tortricidae). The entire closed circular molecule is 15,368 bp and contains 37 genes with the typical gene complement and order for lepidopteran mtgenomes. All tRNAs except tRNASer(AGN) can be folded into the typical cloverleaf secondary structures. The protein-coding genes (PCGs) have typical mitochondrial start codons, with the exception of COI, which uses the unusual CGA one as is found in all other Lepidoptera sequenced to date. In addition, six of 13 PCGs harbor the incomplete termination codons, a single T. The A+T-rich region contains some conserved structures that are similar to those found in other lepidopteran mtgenomes, including a structure combining the motif 'ATAGA', a 19-bp poly(T) stretch and three microsatellite (AT)n elements which are part of larger 122+ bp macrorepeats. This is the first report of macrorepeats in a lepidopteran mtgenome.