266 resultados para Malignant Melanoma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the 'high-p53'Mdm4+/- mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/- background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/- mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomarotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile teledermatoscopy (MTD) for the early detection of skin cancer uses smartphones with dermatoscope attachments to magnify, capture, and transfer images remotely.1 Using the asymmetry–color variation (AC) rule, consumers achieve dermoscopy sensitivity of 92.9% to 94.0% and specificity of 62.0% to 64.2% for melanoma.2 This pilot randomized trial assessed lesions of concern selected by consumers at high risk of melanoma using MTD plus the AC rule (intervention, n = 10) or the AC rule alone (control, n = 12) during skin self-examination (SSE). Also measured were lesion location patterns, lesions overlooked by participants, provisional clinical diagnoses, likelihood of malignant tumor, and participant pressure to excise lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Worldwide, the incidence of thick melanoma has not declined, and the nodular melanoma (NM) subtype accounts for nearly 40% of newly-diagnosed thick melanoma. To assess differences between patients with thin (≤2.00 mm) and thick (≥2.01 mm) nodular melanoma, we evaluated factors such as demographics, melanoma detection patterns, tumor visibility, and physician screening for NM alone and compared clinical presentation and anatomic location of NM with superficial spreading melanoma (SSM). Methods We utilized data from a large population-based study of Queensland (Australia) residents diagnosed with melanoma. Queensland residents aged 20 to 75 years with histologically confirmed first primary invasive cutaneous melanoma were eligible for the study, and all questionnaires were conducted by telephone (response rate 77.9%). Results During this four-year period, 369 patients with nodular melanoma were interviewed, of whom 56.7% were diagnosed with tumors ≤ 2.00 mm. Men, older individuals, and those who had not been screened by a physician in the past three years were more likely to have nodular tumors of greater thickness. Thickest nodular melanoma (4 mm+) was also most common in persons who had not been screened by a doctor within the past three years (OR 3.75; 95% CI 1.47-9.59). Forty-six percent of patients with thin nodular melanoma (≤ 2.00 mm) reported a change in color, compared with 64% of patients with thin SSM and 26% of patients with thick nodular melanoma (>2.00 mm). Conclusion Awareness of factors related to earlier detection of potentially fatal nodular melanomas, including the benefits of a physician examination, should be useful in enhancing public and professional education strategies. Particular awareness of clinical warning signs associated with thin nodular melanoma should allow for more prompt diagnosis and treatment of this subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma is one of the most aggressive cancers affecting humans. Although early melanomas are curable with surgical excision, metastatic melanomas are associated with high mortality. The mechanism of melanoma development, progression, and metastasis is largely unknown. In order to uncover genes unique to melanoma cells, we used high-density DNA microarrays to examine the gene expression profiles of metastatic melanoma nodules using benign nevi as controls. Over 190 genes were significantly overexpressed in metastatic melanomas compared with normal nevi by at least 2-fold. One of the most abundantly expressed genes in metastatic melanoma nodules is osteopontin (OPN). Immunohistochemistry staining on tissue microarrays and individual skin biopsies representing different stages of melanoma progression revealed that OPN expression is first acquired at the step of melanoma tissue invasion. In addition, blocking of OPN expression by RNA interference reduced melanoma cell numbers in vitro. Our observations suggest that OPN may be acquired early in melanoma development and progression, and may enhance tumor cell growth in invasive melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a systematic analysis of genotype-specific melanocyte (MC) UVR responses in transgenic mouse melanoma models along with tumour penetrance and comparative histopathology. pRb or p53 pathway mutations cooperated with NrasQ61K to transform MCs. We previously reported that MCs migrate from the follicular outer root sheath into the epidermis after neonatal UVR. Here, we found that Arf or p53 loss markedly diminished this response. Despite this, mice carrying these mutations developed melanoma with very early age of onset after neonatal UVR. Cdk4R24C did not affect the MC migration. Instead, independent of UVR exposure, interfollicular dermal MCs were more prevalent in Cdk4R24C mice. Subsequently, in adulthood, these mutants developed dermal MC proliferations reminiscent of superficial congenital naevi. Two types of melanoma were observed in this model. The location and growth pattern of the first was consistent with derivation from the naevi, while the second appeared to be of deep dermal origin. In animals carrying the Arf or p53 defects, no naevi were detected, with all tumours ostensibly skipping the benign precursor stage in progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing epidemiological and molecular evidence that cutaneous melanomas arise through multiple causal pathways. The purpose of this study was to explore the relationship between germline and somatic mutations in a population-based series of melanoma patients to reshape and refine the divergent pathway model for melanoma. Melanomas collected from 123 Australian patients were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed phenotypic and sun exposure data were systematically collected from all patients. We found that BRAF-mutant melanomas were significantly more likely from younger patients and those with high nevus counts, and were more likely in melanomas with adjacent neval remnants. Conversely, BRAF-mutant melanomas were significantly less likely in people with high levels of lifetime sun exposure. We observed no association between germline MC1R status and somatic BRAF mutations in melanomas from this population. BRAF-mutant melanomas have different origins from other cutaneous melanomas. These data support the divergent pathways hypothesis for melanoma, which may require a reappraisal of targeted cancer prevention activities.