320 resultados para Major Histocompatibility Complex
Resumo:
Objective. Ankylosing spondylitis (AS) affects 0.25-1.0% of the population, and its etiology is incompletely understood. Susceptibility to this highly familial disease (λ(s) = 58) is primarily genetically determined. There is a significant sex bias in AS, and there are differences in recurrence risk to the offspring of affected mothers and fathers, suggesting that there may be an X-linked recessive effect. We undertook an X- chromosome linkage study to determine any contribution of the X-chromosome to AS susceptibility. Methods. A linkage study of the X-chromosome using 234 affected sibling pairs was performed to investigate this hypothesis. Results. No linkage of the X-chromosome with susceptibility to AS was found. Model- free multipoint linkage analysis strongly excluded any significant genetic contribution (λ ≥1.5) to AS susceptibility encoded on the X-chromosome (logarithm of odds [LOD] <-2.0). Smaller genetic effects (A ≥1.3) were also found to be unlikely (LOD <-1.0). Conclusion. The sex bias in AS is not explained by X-chromosome-encoded genetic effects. The disease model best explaining the sex bias in occurrence and transmission of AS is a polygenic model with a higher susceptibility threshold in females.
Resumo:
Objective. To undertake a systematic wholegenome screen to identify regions exhibiting genetic linkage to rheumatoid arthritis (RA). Methods. Two hundred fifty-two RA-affected sibling pairs from 182 UK families were genotyped using 365 highly informative microsatellite markers. Microsatellite genotyping was performed using fluorescent polymerase chain reaction primers and semiautomated DNA sequencing technology. Linkage analysis was undertaken using MAPMAKER/SIBS for single-point and multipoint analysis. Results. Significant linkage (maximum logarithm of odds score 4.7 [P = 0.000003] at marker D6S276, 1 cM from HLA-DRB1) was identified around the major histocompatibility complex (MHC) region on chromosome 6. Suggestive linkage (P < 7.4 × 10-4) was identified on chromosome 6q by single- and multipoint analysis. Ten other sites of nominal linkage (P < 0.05) were identified on chromosomes 3p, 4q, 7p, 2 regions of 10q, 2 regions of 14q, 16p, 21q, and Xq by single-point analysis and on 3 sites (1q, 14q, and 14q) by multipoint analysis. Conclusion. Linkage to the MHC region was confirmed. Eleven non-HLA regions demonstrated evidence of suggestive or nominal linkage, but none reached the genome-wide threshold for significant linkage (P = 2.2 × 10-5). Results of previous genome screens have suggested that 6 of these regions may be involved in RA susceptibility.
Resumo:
Objective. HLA-DRB1, a major genetic determinant of susceptibility to rheumatoid arthritis (RA), is located within 1,000 kb of the gene encoding tumor necrosis factor (TNF). Because certain HLA-DRB1*04 subtypes increase susceptibility to RA, investigation of the role of the TNF gene is complicated by linkage disequilibrium (LD) between TNF and DRB1 alleles. By adequately controlling for this LD, we aimed to investigate the presence of additional major histocompatibility complex (MHC) susceptibility genes. Methods. We identified 274 HLA-DRB1*04-positive cases of RA and 271 HLA-DRB1*04-positive population controls. Each subject was typed for 6 single-nucleotide polymorphisms within a 4.5-kb region encompassing TNF and lymphotoxin a (LTA). LTA-TNF haplotypes in these unrelated individuals were determined using a combination of family data and the PHASE software program. Results. Significant differences in LTA-TNF haplotype frequencies were observed between different subtypes of HLA-DRB1*04. The LTA-TNF haplotypes observed were very restricted, with only 4 haplotypes constituting 81% of all haplotypes present. Among individuals carrying DRB1*0401, the LTA-TNF 2 haplotype was significantly underrepresented in cases compared with controls (odds ratio 0.5 [95% confidence interval 0.3-0.8], P = 0.007), while in those with DRB1*0404, the opposite effect was observed (P = 0.007). Conclusion. These findings suggest that the MHC contains genetic elements outside the LTA-TNF region that modify the effect of HLA-DRB1 on susceptibility to RA.
Resumo:
Objective To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. Methods A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. Results Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10 -21), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10-16), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10-15). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10-18), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10-8). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. Conclusion This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants. Copyright © 2014 by the American College of Rheumatology.
Resumo:
Objective Several genetic risk variants for ankylosing spondylitis (AS) have been identified in genome-wide association studies. Our objective was to examine whether familial AS cases have a higher genetic load of these susceptibility variants. Methods Overall, 502 AS patients were examined, consisting of 312 patients who had first-degree relatives (FDRs) with AS (familial) and 190 patients who had no FDRs with AS or spondylarthritis (sporadic). All patients and affected FDRs fulfilled the modified New York criteria for AS. The patients were recruited from 2 US cohorts (the North American Spondylitis Consortium and the Prospective Study of Outcomes in Ankylosing Spondylitis) and from the UK-Oxford cohort. The frequencies of AS susceptibility loci in IL-23R, IL1R2, ANTXR2, ERAP-1, 2 intergenic regions on chromosomes 2p15 and 21q22, and HLA-B27 status as determined by the tag single-nucleotide polymorphism (SNP) rs4349859 were compared between familial and sporadic cases of AS. Association between SNPs and multiplex status was assessed by logistic regression controlling for sibship size. Results HLA-B27 was significantly more prevalent in familial than sporadic cases of AS (odds ratio 4.44 [95% confidence interval 2.06, 9.55], P = 0.0001). Furthermore, the AS risk allele at chromosome 21q22 intergenic region showed a trend toward higher frequency in the multiplex cases (P = 0.08). The frequency of the other AS risk variants did not differ significantly between familial and sporadic cases, either individually or combined. Conclusion HLA-B27 is more prevalent in familial than sporadic cases of AS, demonstrating higher familial aggregation of AS in patients with HLA-B27 positivity. The frequency of the recently described non-major histocompatibility complex susceptibility loci is not markedly different between the sporadic and familial cases of AS.
Resumo:
The advent of high-throughput SNP genotyping methods has advanced research into the genetics of common complex genetic diseases such as ankylosing spondylitis (AS) rapidly in recent times. The identification of associations with the genes IL23R and ERAP1 have been robustly replicated, and advances have been made in studies of the major histocompatibility complex genetics of AS, and of KIR gene variants and the disease. The findings are already being translated into increased understanding of the immunological pathways involved in AS, and raising novel potential therapies. The current studies in AS remain underpowered, and no full genomewide association study has yet been reported in AS; such studies are likely to add to the significant advances that have already been made.
Resumo:
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthropathy. In addition to being strongly associated with HLA-B27, a further 13 genes have been robustly associated with the disease. These genes highlight the involvement of the IL-23 pathway in disease pathogenesis, and indicate overlaps between the pathogenesis of AS, and of inflammatory bowel disease. Genetic associations in B27-positive and -negative disease are similar, with the main exception of association with ERAP1, which is restricted in association to B27-positive cases. This restriction, and the known function of ERAP1 in peptide trimming prior to HLA Class I presentation, indicates that HLA-B27 is likely to operate in AS by a mechanism involving aberrant peptide handling. These advances point to several potential novel therapeutic approaches in AS.
Resumo:
The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.
Resumo:
Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.
Resumo:
Ankylosing spondylitis is a common inflammatory rheumatic disease. Both susceptibility to and clinical manifestations of the disease are highly heritable. Although some genes, notably HLA-B27, have been implicated in susceptibility to the disease, the genetics of the condition are complex and many more genes involved in the condition await discovery.
Resumo:
Both ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are common, highly heritable conditions, the pathogenesis of which are incompletely understood. Gene-mapping studies in both conditions have over the last couple of years made major breakthroughs in identifying the mechanisms by which these diseases occur. Considering RA, there is an over-representation of genes involved in TNF signalling and the NFκB pathway that have been shown to influence the disease risk. There is also considerable sharing of susceptibility genes between RA and other autoimmune diseases such as systemic lupus erythematosus, type 1 diabetes, autoimmune thyroid disease and celiac disease, with thus far little overlap with AS. In AS, genes involved in response to IL12/IL23, and in endoplasmic reticulum peptide presentation, have been identified, but a full genomewide association study has not yet been reported.
Resumo:
Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.
Resumo:
Predisposition to ankylosing spondylitis is largely genetic, and epidemiologic studies suggest that the environmental trigger is ubiquitous. HLA-B27 and -B60 predispose to ankylosing spondylitis, but in neither case is the mechanism of effect known. Other major histocompatibility complex and non-major histocompatibility complex genes are likely to influence susceptibility to spondyloarthritis as well as the disease pattern. Spondyloarthritis occurs in genetically predisposed inviduals exposed to certain as yet undefined environmental triggers. Although genes within the major histocompatibility complex are clearly major determinants of susceptibility to spondyloarthritis, epidemiologic evidence suggests that their contribution accounts for less than 50% of the total. The mechanism of association of B27 with these diseases is unknown; we are currently unable to predict which E27 carriers will develop arthritis or which form of BP27-associated spondyloarthritis they will develop. Lessons from transgenic animal experiments and technical and statistical advances in the field of genetics have greatly increased our ability to investigate these questions.
Resumo:
Purpose of review The field of genetic research in ankylosing spondylitis (AS) is advancing rapidly. The purpose of this review is to outline recent findings, particularly, in regard to genetic studies of the major histocompatibility complex (MHC) and the non-MHC genes IL23R, ERAP1, and killer cell immunologlobulin-like receptor (KIR) complex, in AS. Recent findings: Convincing evidence has been reported for the existence of further non-B27 MHC genes involved in AS. Strong, replicated association has been reported with IL23R and ERAP1 and AS. The IL23R finding strongly implicates the TH17 lymphocyte system in AS aetiopathogenesis. Suggestive evidence of a role for KIR gene polymorphism in AS exists, but definitive findings are awaited. Summary: The findings suggest that further genome-wide studies in large case-control cohorts are likely to be very productive in this disease. The IL23R findings and subsequent immunological investigations suggest that targeted intervention in the TH17 system is likely to have major therapeutic benefit, as it does in the genetically related diseases, inflammatory bowel disease and psoriasis.
Resumo:
Purpose of Review Over the past 3 years, several new genes and gene deserts have been identified that are associated with ankylosing spondylitis (AS). The purpose of this review is to discuss the major findings of these studies, and the answers they provide and questions they raise about the pathogenesis of this common condition. Recent Findings: Five genes/genetic regions have now definitively been associated with AS [the major histocompatibility complex (MHC), IL23R, ERAP1, 2p15 and 21q22]. Strong evidence to support association with the disease has been demonstrated for the genes IL1R2, ANTXR2, TNFSF15, TNFR1 and a region on chromosome 16q including the gene TRADD. There is an overrepresentation of genes involved in Th17 lymphocyte differentiation/activation among genes associated with AS and the related diseases inflammatory bowel disease and psoriasis, pointing strongly to this pathway as playing a major causative role in the disease. Increasing information about differential association of HLA-B27 subtypes with disease suggests a hierarchy of strength of association of those alleles with AS, providing a useful test as to the validity of different potential mechanisms of association of HLA-B27 with AS. The mechanism underlying the association of the gene deserts, 2p15 and 21q22, suggests the involvement of noncoding RNA in AS etiopathogenesis. Summary: The increasing list of genes identified as being definitely involved in AS provides a useful platform for hypothesis-driven research in the field, providing a potential alternative route to determining the underlying mechanisms involved in the disease to research focusing on HLA-B27 alone.