29 resultados para MRT,voxel-dosimetry,terapia radiometabolica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research developed and scientifically validated a new ultrasound transmission computed tomography system with the aim of quantitative assessment of a polymer gel dosimeter including dose response verification of ultrasonic parameters of attenuation, velocity and broadband ultrasound attenuation (BUA). This work was the first to investigate and report ultrasound frequency dependent attenuation in a gel dosimeter, demonstrating a dose dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used a homogeneous water-equivalent model of an electronic portal imaging device (EPID), contoured as a structure in a radiotherapy treatment plan, to produce reference dose images for comparison with in vivo EPID dosimetry images. Head and neck treatments were chosen as the focus of this study, due to the heterogeneous anatomies involved and the consequent difficulty of rapidly obtaining reliable reference dose images by other means. A phantom approximating the size and heterogeneity of a typical neck, with a maximum radiological thickness of 8.5 cm, was constructed for use in this study. This phantom was CT scanned and a simple treatment including five square test fields and one off-axis IMRT field was planned. In order to allow the treatment planning system to calculate dose in a model EPID positioned a distance downstream from the phantom to achieve a source-to-detector distance (SDD) of 150 cm, the CT images were padded with air and the phantom’s “body” contour was extended to encompass the EPID contour. Comparison of dose images obtained from treatment planning calculations and experimental irradiations showed good agreement, with more than 90% of points in all fields passing a gamma evaluation, at γ (3%, 3mm )Similar agreement was achieved when the phantom was over-written with air in the treatment plan and removed from the experimental beam, suggesting that water EPID model at 150 cm SDD is capable of providing accurate reference images for comparison with clinical IMRT treatment images, for patient anatomies with radiological thicknesses ranging from 0 up to approximately 9 cm. This methodology therefore has the potential to be used for in vivo dosimetry during treatments to tissues in the neck as well as the oral and nasal cavities, in the head-and-neck region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction This study investigates uncertainties pertaining to the use of optically stimulated luminescence dosimeters (OSLDs) in radiotherapy dosimetry. The sensitivity of the luminescent material is related to the density of recombination centres [1], which is in the range of 1015–1016 cm-3. Because of this non-uniform distribution of traps in crystal growth the sensitivity varies substantially within a batch of dosimeters. However, a quantitative understanding of the relationship between the response of an OSLD and its sensitive volume has not yet been investigated or reported in literature. Methods In this work, OSLDs are scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. Results When extrapolating the sensitive volume’s radiodensity from the CT data, it was shown that there is a non-uniform distribution incrystal growth as illustrated in Fig. 1. A plot of voxel count versus the element-specific correction factor is shown in Fig. 2 where each point represents a single OSLD. A line was fitted which has an R2-value of 0.69 and a P-value of 8.21 9 10-19. This data shows that the response of a dosimeter decreases proportionally with sensitive volume. Extrapolating from this data, a quantitative relationship between response and sensitive volume was roughly determined for this batch of dosimeters. A change in volume of 1.176 9 10-5 cm3 corresponds to a 1 % change in response. In other words, a 0.05 % change in the nominal volume of the chip would result in a 1 % change in response. Discussion and conclusions This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor. Furthermore, the ‘true’ volume of an OSLD’s sensitive material is, on average, 17.90 % less than that which has been reported in literature, mainly due to the presence of air cavities in the material’s structure. Finally, the potential effects of the inaccuracy of Al2O3:C deposition increases with decreasing chip size. If a luminescent dosimeter were manufactured with a smaller volume than currently employed using the same manufacturing protocol, the variation in response from chip to chip would more than likely exceed the current 5 % range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab lMLC attachment for square field sizes down to 6 mm 9 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereotactic radiosurgery (SRS) treatments for brain cancers require small and precisely shaped photon beams. These beams can be generated by fitting a linear accelerator with a micro-multileaf collimator (mMLC) such as the BrainLAB m3, which offers greater flexibility for field shaping than standard SRS cone collimators

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated in detail the physics of small X-ray fields used in radiotherapy treatments. Because of this work, the ability to accurately measure dose from these very small X-ray fields has been improved in several ways. These include scientifically quantifying when highly accurate measurements are required by introducing the concept of a very small field, and by the invention of a new detector that responds the same in very small fields as in normal fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.