168 resultados para MODIFIED LAYERED SILICATES
Resumo:
Sandy soils have low water and nutrient retention capabilities so that zeolite soil amendments are used for high value land uses including turf and horticulture to reduce leaching losses of NH4+ fertilisers. MesoLite is a zeolitic material made by caustic treatment of kaolin at 80-95oC. It has a moderately low surface area (9-12m2/g) and very high cation exchange capacity (494 cmol(+)/kg). Laboratory column experiments showed that an addition of 0.4% MesoLite to a sandy soil greatly (90%) reduced leaching of added NH4+ compared to an unamended soil and MesoLite is 11 times more efficient in retaining NH4+ than natural zeolite. Furthermore, NH4+-MesoLite slowly releases NH4+ to soil solution and is likely to be an effective slow release fertiliser.
Resumo:
In what follows, I put forward an argument for an analytical method for social science that operates at the level of genre. I argue that generic convergence, generic hybridity, and generic instability provide us with a powerful perspectives on changes in political, cultural, and economic relationships, most specifically at the level of institutions. Such a perspective can help us identify the transitional elements, relationships, and trajectories that define the place of our current system in history, thereby grounding our understanding of possible futures.1 In historically contextualising our present with this method, my concern is to indicate possibilities for the future. Systemic contradictions indicate possibility spaces within which systemic change must and will emerge. We live in a system currently dominated by many fully-expressed contradictions, and so in the presence of many possible futures. The contradictions of the current age are expressed most overtly in the public genres of power politics. Contemporary public policy—indeed politics in general-is an excellent focus for any investigation of possible futures, precisely because of its future-oriented function. It is overtly hortatory; it is designed ‘to get people to do things’ (Muntigl in press: 147). There is no point in trying to get people to do things in the past. Consequently, policy discourse is inherently oriented towards creating some future state of affairs (Graham in press), along with concomitant ways of being, knowing, representing, and acting (Fairclough 2000).
Resumo:
In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.
Resumo:
The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3-D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, Transmission X-ray Microscopy (TXM), which makes it possible to investigate the internal structure and 3-D tomographic reconstruction of the smectite clay aggregates modified by Al13 keggin macro-molecule [Al13(O)4(OH)24(H2O)12 ]7+. Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation.
Resumo:
Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.