84 resultados para MASS ANALYZED LON KINETIC ENERGY SPECTROMETRY(MIKES)
Resumo:
To investigate the correlation between postmenopausal osteoporosis (PMO) and the pathogenesis of periodontitis, ovariectomized rats were generated and the experimental periodontitis was induced using a silk ligature. The inflammatory factors and bone metabolic markers were measured in the serum and periodontal tissues of ovariectomized rats using an automatic chemistry analyzer, enzyme-linked immunosorbent assays, and immunohistochemistry. The bone mineral density of whole body, pelvis, and spine was analyzed using dual-energy X-ray absorptiometry and image analysis. All data were analyzed using SPSS 13.0 statistical software. It was found that ovariectomy could upregulate the expression of interleukin- (IL-)6, the receptor activator of nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG) and downregulate IL-10 expression in periodontal tissues, which resulted in progressive alveolar bone loss in experimental periodontitis. This study indicates that changes of cytokines and bone turnover markers in the periodontal tissues of ovariectomized rats contribute to the damage of periodontal tissues.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
Rheological property of F-actin cytoskeleton is significant to the restructuring of cytoskeleton under a variety of cell activities. This study numerically validates the rheological property of F-actin cytoskeleton is not only a result of kinetic energy dissipation of F-actin, but also greatly depends on the configuration remodeling of networks structure. Both filament geometry and crosslinker properties can affect the remodeling of F-actin cytoskeleton. The crosslinker unbinding is found to dissipate energy and induce prominent stress relaxation in the F-actin adjacent to cross-linkages. Coupled with F-actin elasticity, the energy dissipation and stress relaxation are more significant in bundled F-actin networks than in single F-actin networks.
Resumo:
In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.
Resumo:
The phase transition of single layer molybdenum disulphide (MoS2) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e- are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2, and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T′-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2 and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.
Resumo:
Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.
Resumo:
The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Purpose. To establish a simple and rapid analytical method, based on direct insertion/electron ionization-mass spectrometry (DI/EI-MS), for measuring free cholesterol in tears from humans and rabbits. Methods. A stable-isotope dilution protocol employing DI/EI-MS in selected ion monitoring mode was developed and validated. It was used to quantify the free cholesterol content in human and rabbit tear extracts. Tears were collected from adult humans (n = 15) and rabbits (n = 10) and lipids extracted. Results. Screening, full-scan (m/z 40-600) DI/EI-MS analysis of crude tear extracts showed that diagnostic ions located in the mass range m/z 350 to 400 were those derived from free cholesterol, with no contribution from cholesterol esters. DI/EI-MS data acquired using selected ion monitoring (SIM) were analyzed for the abundance ratios of diagnostic ions with their stable isotope-labeled analogues arising from the D6-cholesterol internal standard. Standard curves of good linearity were produced and an on-probe limit of detection of 3 ng (at 3:1 signal to noise) and limit of quantification of 8 ng (at 10:1 signal to noise). The concentration of free cholesterol in human tears was 15 ± 6 μg/g, which was higher than in rabbit tears (10 ± 5 μg/g). Conclusions. A stable-isotope dilution DI/EI-SIM method for free cholesterol quantification without prior chromatographic separation was established. Using this method demonstrated that humans have higher free cholesterol levels in their tears than rabbits. This is in agreement with previous reports. This paper provides a rapid and reliable method to measure free cholesterol in small-volume clinical samples. © 2013 The Association for Research in Vision and Ophthalmology, Inc.