134 resultados para Liquid fluidised bed Contactor
Resumo:
Rather than passing judgment of the content of young women’s magazines, it will be argued instead that such texts actually exist as manuals of self-formation, manuals which enroll young women to do specific kinds of work on themselves. In doing so, they form an effective link between the governmental imperatives aimed at constructing particular personas – such as the sexually responsible young girl - and the actual practices whereby these imperatives are operationalised.
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.
Resumo:
Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.
Resumo:
Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.
Resumo:
The stimulus for this project rose from the need to find an alternative solution to aging superstructures of road-bridge in low volume roads (LVR). The solution investigated, designed and consequently plans to construct, involved replacing an aging super-structure of a 10m span bridge with Flat-Bed Rail Wagon (FBRW). The main focus of this paper is to present alternate structural system for the design of the FBRW as road bridge deck conforming to AS5100. The structural adequacy of the primary members of the FBRW was first validated using full scale experimental investigation to AS5100 serviceability and ultimate limit state loading. The bare FBRW was further developed to include a running surface. Two options were evaluated during the design phase, namely timber and reinforced concrete. First option, which is presented here, involved strengthening of the FBRW using numerous steel sections and overlaying the bridge deck with timber planks. The idea of this approach was to use all the primary and secondary members of the FBRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option, which was the preferred option for construction, involved use of primary members only with an overlaying reinforced concrete slab deck. This option minimised the risk associated with any uncertainty of secondary members to its structural adequacy. The paper will report selected results of the experiment as well as the design phases of option one with conclusions highlighting the viability of option 1 and its limitations.
Resumo:
This thesis consists of a confessional narrative, What My Mother Doesn’t Know, and an accompanying exegesis, And Why I Should (Maybe) Tell Her. The creative piece employs the confessional mode as a subversive device in three separate narratives, each of which situates the bed as a site of resistance. The exegesis investigates how this self-disclosure in a domestic space flouts the governing rules of self-representation, specifically: telling the truth, respecting privacy and displaying normalcy. The female confession, I argue, creates an alternative space in women’s autobiography where notions of truth-telling can be undermined, the political dimensions of personal experience can be uncovered and the discourse of normality can be negotiated. In particular, women’s confessions told in, on or about the bed, dismantle the genre’s illusion of self and confirm the representative aspects of women’s experience. Framed within these parameters of power and powerlessness, the exegesis includes textual analyses of Charlotte Perkins Gilman’s The Yellow Wallpaper (1892), Tracey Emin’s My Bed (1999) and Lauren Slater’s Lying (2000), each of which exposes in a bedroom space, the author’s most obscure, intimate and traumatic experiences. Situated firmly within and against the genre’s traditional masculine domain, the exegesis also includes mediations on the creative work that validate the bed as my fabric for confession.
Resumo:
Objective: To explore the specific factors that impact on nursing resources in relation to the ‘unoccupied bed’. Design: Descriptive observational Setting: Multiple wards in single site, tertiary referral hospital Main outcome measure: Identification and classification of tasks related to the unoccupied bed. Results: Our study identified three main areas of nursing work, which centre on the ‘unoccupied bed’: 1) bed preparation for admission; 2) temporary transfer; 3) bed preparation post patient discharge. Conclusion: The unoccupied bed is not resource neutral and may involve considerable nursing time. The time associated with each of the reasons for the bed being unoccupied remains to be quantified.