33 resultados para Li_8SiN_4-Li_3N-BN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks (BNs) provide a statistical modelling framework which is ideally suited for modelling the many factors and components of complex problems such as healthcare-acquired infections. The methicillin-resistant Staphylococcus aureus (MRSA) organism is particularly troublesome since it is resistant to standard treatments for Staph infections. Overcrowding and understa�ng are believed to increase infection transmission rates and also to inhibit the effectiveness of disease control measures. Clearly the mechanisms behind MRSA transmission and containment are very complicated and control strategies may only be e�ective when used in combination. BNs are growing in popularity in general and in medical sciences in particular. A recent Current Content search of the number of published BN journal articles showed a fi�ve fold increase in general and a six fold increase in medical and veterinary science from 2000 to 2009. This chapter introduces the reader to Bayesian network (BN) modelling and an iterative modelling approach to build and test the BN created to investigate the possible role of high bed occupancy on transmission of MRSA while simultaneously taking into account other risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Beyond Compliance project, which began in July 2011 with funding from the Standards and Trade Development Facility for 2 years, aims to enhance competency and confidence in the South East Asian sub-region by applying a Systems Approach for pest risk management. The Systems Approach involves the use of integrated measures, at least two of which are independent, that cumulatively reduce the risk of introducing exotic pests through trade. Although useful in circumstances where single measures are inappropriate or unavailable, the Systems Approach is inherently more complicated than single-measure approaches, which may inhibit its uptake. The project methodology is to take prototype decision-support tools, such as Control Point-Bayesian Networks (CP-BN), developed in recent plant health initiatives in other regions, including the European PRATIQUE project, and to refine them within this sub-regional context. Case studies of high-priority potential agricultural trade will be conducted by National Plant Protection Organizations of participating South East Asian countries in trials of the tools, before further modifications. Longer term outcomes may include: more robust pest risk management in the region (for exports and imports); greater inclusion of stakeholders in development of pest risk management plans; increased confidence in trade negotiations; and new opportunities for trade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Expert knowledge continues to gain recognition as a valuable source of information in a wide range of research applications. Despite recent advances in defining expert knowledge, comparatively little attention has been given to how to view expertise as a system of interacting contributory factors, and thereby, to quantify an individual’s expertise. 2. We present a systems approach to describing expertise that accounts for many contributing factors and their interrelationships, and allows quantification of an individual’s expertise. A Bayesian network (BN) was chosen for this purpose. For the purpose of illustration, we focused on taxonomic expertise. The model structure was developed in consultation with professional taxonomists. The relative importance of the factors within the network were determined by a second set of senior taxonomists. This second set of experts (i.e. supra-experts) also provided validation of the model structure. Model performance was then assessed by applying the model to hypothetical career states in the discipline of taxonomy. Hypothetical career states were used to incorporate the greatest possible differences in career states and provide an opportunity to test the model against known inputs. 3. The resulting BN model consisted of 18 primary nodes feeding through one to three higher-order nodes before converging on the target node (Taxonomic Expert). There was strong consistency among node weights provided by the supra-experts for some nodes, but not others. The higher order nodes, “Quality of work” and “Total productivity”, had the greatest weights. Sensitivity analysis indicated that although some factors had stronger influence in the outer nodes of the network, there was relatively equal influence of the factors leading directly into the target node. Despite differences in the node weights provided by our supra-experts, there was remarkably good agreement among assessments of our hypothetical experts that accurately reflected differences we had built into them. 4. This systems approach provides a novel way of assessing the overall level of expertise of individuals, accounting for multiple contributory factors, and their interactions. Our approach is adaptable to other situations where it is desirable to understand components of expertise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This overview article for the special series “Bayesian Networks in Environmental and Resource Management” reviews 7 case study articles with the aim to compare Bayesian network (BN) applications to different environmental and resource management problems from around the world. The article discusses advances in the last decade in the use of BNs as applied to environmental and resource management. We highlight progress in computational methods, best-practices for model design and model communication. We review several research challenges to the use of BNs in environmental and resource management that we think may find a solution in the near future with further research attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to ‘empty’ reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diploma students transitioning into the NS40 BNursing (BN) course at QUT withdraw from the bioscience and pharmacology units, and leave the university at higher rates than traditional students. The diploma students, entering in second year, have missed out on 2 units of bioscience taught to the traditional students in their first year, and miss out on a 3rd unit of bioscience taught to the traditional students in their 2nd year. Instead the diploma students receive one specialized unit in bioscience only i.e. a bridging unit. As a consequence, the diploma students may not have the depth of bioscience knowledge to be able to successfully study the bridging unit (LSB111) or the pharmacology unit (LSB384). Our plan was to write an eBook which refreshed and reinforced diploma students’ knowledge of bioscience aiming to prepare them with the concepts and terminology, and to build a level of confidence to support their transition to the BN. We have previously developed an intervention associated with reduced attrition of diploma nursing students, and this was our starting point. The study skills part of the initial intervention was addressed in the eBook, by links to the specialist services and resources available from our liaison librarian and academic skills adviser. The introductory bioscience/pharmacology information provided by the previous intervention involved material from standard textbooks. However, we considered this material too difficult for diploma students. Thus, we created simplified diagrams to go with text as part of our eBook. The outcome is an eBook, created and made available to the diploma students via the Community Website: “Surviving Bioscience and Pharmacology”. Using simplified diagrams to illustrate the concise text, definition to explain the concepts, the focus has been on encouraging self-awareness and help-seeking strategies and building students who take responsibility for their learning. All the nursing students in the second semester LSB384 Pharmacology Unit have been surveyed face-to-face to get feedback on their engagement with the eBook resource. The data has not been analysed to date. An important consideration is that the website be evaluated by the diploma students as they come into bioscience in first semester (LSB111), the student population for whom the eBook is primarily intended. To get a good response rate we need to do a face-to-face survey. However, we have not been able to do this, as the co-ordinator of the unit has changed since we started the project, and the present co-ordinator will not allow us access to these students.