158 resultados para Lexical Processing


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Many bilinguals will have had the experience of unintentionally reading something in a language other than the intended one (e.g. MUG to mean mosquito in Dutch rather than a receptacle for a hot drink, as one of the possible intended English meanings), of finding themselves blocked on a word for which many alternatives suggest themselves (but, somewhat annoyingly, not in the right language), of their accent changing when stressed or tired and, occasionally, of starting to speak in a language that is not understood by those around them. These instances where lexical access appears compromised and control over language behavior is reduced hint at the intricate structure of the bilingual lexical architecture and the complexity of the processes by which knowledge is accessed and retrieved. While bilinguals might tend to blame word finding and other language problems on their bilinguality, these difficulties per se are not unique to the bilingual population. However, what is unique, and yet far more common than is appreciated by monolinguals, is the cognitive architecture that subserves bilingual language processing. With bilingualism (and multilingualism) the rule rather than the exception (Grosjean, 1982), this architecture may well be the default structure of the language processing system. As such, it is critical that we understand more fully not only how the processing of more than one language is subserved by the brain, but also how this understanding furthers our knowledge of the cognitive architecture that encapsulates the bilingual mental lexicon. The neurolinguistic approach to bilingualism focuses on determining the manner in which the two (or more) languages are stored in the brain and how they are differentially (or similarly) processed. The underlying assumption is that the acquisition of more than one language requires at the very least a change to or expansion of the existing lexicon, if not the formation of language-specific components, and this is likely to manifest in some way at the physiological level. There are many sources of information, ranging from data on bilingual aphasic patients (Paradis, 1977, 1985, 1997) to lateralization (Vaid, 1983; see Hull & Vaid, 2006, for a review), recordings of event-related potentials (ERPs) (e.g. Ardal et al., 1990; Phillips et al., 2006), and positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies of neurologically intact bilinguals (see Indefrey, 2006; Vaid & Hull, 2002, for reviews). Following the consideration of methodological issues and interpretative limitations that characterize these approaches, the chapter focuses on how the application of these approaches has furthered our understanding of (1) selectivity of bilingual lexical access, (2) distinctions between word types in the bilingual lexicon and (3) control processes that enable language selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.