290 resultados para Latent class growth analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common neurological disorder with a strong genetic basis. However, the complex nature of the disorder has meant that few genes or susceptibility loci have been identified and replicated consistently to confirm their involvement in migraine. Approaches to genetic studies of the disorder have included analysis of the rare migraine subtype, familial hemiplegic migraine with several causal genes identified for this severe subtype. However, the exact genetic contributors to the more common migraine subtypes are still to be deciphered. Genome-wide studies such as genome-wide association studies and linkage analysis as well as candidate genes studies have been employed to investigate genes involved in common migraine. Neurological, hormonal and vascular genes are all considered key factors in the pathophysiology of migraine and are a focus of many of these studies. It is clear that the influence of individual genes on the expression of this disorder will vary. Furthermore, the disorder may be dependent on gene–gene and gene–environment interactions that have not yet been considered. In addition, identifying susceptibility genes may require phenotyping methods outside of the International Classification of Headache Disorders II criteria, such as trait component analysis and latent class analysis to better define the ambit of migraine expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Population-based surveys demonstrate cannabis users are more likely to use both illicit and licit substances, compared with non-cannabis users. Few studies have examined the substance use profiles of cannabis users referred for treatment. Co-existing mental health symptoms and underlying cannabis-related beliefs associated with these profiles remains unexplored. Methods: Comprehensive drug use and dependence severity (Severity of Dependence Scale-Cannabis) data were collected on a sample of 826 cannabis users referred for treatment. Patients completed the General Health Questionnaire, Cannabis Expectancy Questionnaire, Cannabis Refusal Self-Efficacy Questionnaire, and Positive Symptoms and Manic-Excitement subscales of the Brief Psychiatric Rating Scale. Latent class analysis was performed on last month use of drugs to identify patterns of multiple drug use. Mental health comorbidity and cannabis beliefs were examined by identified drug use pattern. Results: A three-class solution provided the best fit to the data: (1) cannabis and tobacco users (n = 176), (2) cannabis, tobacco, and alcohol users (n = 498), and (3) wide-ranging sub- stance users (n = 132). Wide-ranging substance users (3) reported higher levels of cannabis dependence severity, negative cannabis expectancies, lower opportunistic, and emotional relief self-efficacy, higher levels of depression and anxiety and higher manic-excitement and positive psychotic symptoms. Conclusion: In a sample of cannabis users referred for treatment, wide-ranging substance use was associated with elevated risk on measures of cannabis dependence, co-morbid psychopathology, and dysfunctional cannabis cognitions. These findings have implications for cognitive-behavioral assessment and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates the operational activities of Chinese hydroelectric power companies over the period 2000-2010 using a finite mixture model that controls for unobserved heterogeneity. In so doing, a stochastic frontier latent class model, which allows for the existence of different technologies, is adopted to estimate cost frontiers. This procedure not only enables us to identify different groups among the hydro-power companies analysed, but also permits the analysis of their cost efficiency. The main result is that three groups are identified in the sample, each equipped with different technologies, suggesting that distinct business strategies need to be adapted to the characteristics of China's hydro-power companies. Some managerial implications are developed. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates the production activities of Japanese airports by using a finite mixture model that allows controlling for unobserved heterogeneity. In doing so, a stochastic frontier latent class model, which allows the existence of different technologies, is adopted to estimate production frontiers. This procedure not only enables the identification of different groups of Japanese airports but also permits the analysis of their production efficiency. The main result is that there are two groups of Japanese airports, both following completely different "technologies" to obtain passengers and cargo, suggesting that business strategies need to be adapted to the characteristics of the airports. Some managerial implications are developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and aims: Despite evidence that many Australian adolescents have considerable experience with various drug types, little is known about the extent to which adolescents use multiple substances. The aim of this study was to examine the degree of clustering of drug types within individuals, and the extent to which demographic and psychosocial predictors are related to cluster membership. Design and method: A sample of 1402 adolescents aged 12-17. years were extracted from the Australian 2007 National Drug Strategy Household Survey. Extracted data included lifetime use of 10 substances, gender, psychological distress, physical health, perceived peer substance use, socioeconomic disadvantage, and regionality. Latent class analysis was used to determine clusters, and multinomial logistic regression employed to examine predictors of cluster membership. Result: There were 3 latent classes. The great majority (79.6%) of adolescents used alcohol only, 18.3% were limited range multidrug users (encompassing alcohol, tobacco, and marijuana), and 2% were extended range multidrug users. Perceived peer drug use and psychological distress predicted limited and extended multiple drug use. Psychological distress was a more significant predictor of extended multidrug use compared to limited multidrug use. Discussion and conclusion: In the Australian school-based prevention setting, a very strong focus on alcohol use and the linkages between alcohol, tobacco and marijuana are warranted. Psychological distress may be an important target for screening and early intervention for adolescents who use multiple drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE/OBJECTIVES: To identify latent classes of individuals with distinct quality-of-life (QOL) trajectories, to evaluate for differences in demographic characteristics between the latent classes, and to evaluate for variations in pro- and anti-inflammatory cytokine genes between the latent classes. DESIGN: Descriptive, longitudinal study. SETTING: Two radiation therapy departments located in a comprehensive cancer center and a community-based oncology program in northern California. SAMPLE: 168 outpatients with prostate, breast, brain, or lung cancer and 85 of their family caregivers (FCs). METHODS: Growth mixture modeling (GMM) was employed to identify latent classes of individuals based on QOL scores measured prior to, during, and for four months following completion of radiation therapy. Single nucleotide polymorphisms (SNPs) and haplotypes in 16 candidate cytokine genes were tested between the latent classes. Logistic regression was used to evaluate the relationships among genotypic and phenotypic characteristics and QOL GMM group membership. MAIN RESEARCH VARIABLES: QOL latent class membership and variations in cytokine genes. FINDINGS: Two latent QOL classes were found: higher and lower. Patients and FCs who were younger, identified with an ethnic minority group, had poorer functional status, or had children living at home were more likely to belong to the lower QOL class. After controlling for significant covariates, between-group differences were found in SNPs in interleukin 1 receptor 2 (IL1R2) and nuclear factor kappa beta 2 (NFKB2). For IL1R2, carrying one or two doses of the rare C allele was associated with decreased odds of belonging to the lower QOL class. For NFKB2, carriers with two doses of the rare G allele were more likely to belong to the lower QOL class. CONCLUSIONS: Unique genetic markers in cytokine genes may partially explain interindividual variability in QOL. IMPLICATIONS FOR NURSING: Determination of high-risk characteristics and unique genetic markers would allow for earlier identification of patients with cancer and FCs at higher risk for poorer QOL. Knowledge of these risk factors could assist in the development of more targeted clinical or supportive care interventions for those identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION AND OBJECTIVE Migraine and major depressive disorder (MDD) frequently co-occur, but it is unclear whether depression is associated with a specific subtype of migraine. The objective of this study was to investigate whether migraine is qualitatively different in MDD patients (N = 1816) and non-depressed controls (N = 3428). METHODS Migraine symptom data were analyzed using multi-group Latent Class Analysis, and a qualitative comparison was made between the symptom profiles of MDD patients and controls, while allowing for differences in migraine prevalence and severity between groups. RESULTS In both groups, three migrainous headache classes were identified, which differed primarily in terms of severity. Both mild and severe migrainous headaches were two to three times more prevalent in MDD patients. Migraine symptom profiles showed only minor qualitative differences in the MDD and non-MDD groups: in the severe migrainous headache class, significant differences were observed only in the prevalence of aggravation by physical activity (83% and 91% for the non-MDD and MDD groups, respectively) and aura (42% vs. 53%, respectively). CONCLUSION The similar overall symptom profiles observed in the MDD and non-MDD subjects suggest that a similar disease process may underlie migraine in both groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [CI] .27 - .59), similar to IHS-based migraine diagnosis (h2 = .49, 95% CI .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h2 = .33, 95% CI .00-.60), but not the LCA-based classification (h2 = .51, 95% CI .23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.