62 resultados para Laser-Frequency Modulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A grid-connected microinverter with a reduced number of power conversion stages and fewer passive components is proposed. A high-frequency transformer and a series-resonant tank are used to interface the full-bridge inverter to the half-wave cycloconverter. All power switches are switched with zero-voltage switching. Phase-shift power modulation is used to control the output power of the inverter. A steady-state analysis of the proposed topology is presented to determine the average output power of the inverter. Analysis of soft switching of the full-bridge and the half-wave cycloconverter is presented with respect to voltage gain, quality factor, and phase shift of the inverter. Simulation and experimental results are presented to validate the operation of the proposed topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-modulation process of a high-frequency surface wave (SW) in a wave-guiding structure - a semibounded magnetoactive plasma and perfectly conducting metal wall - is considered for the weak nonlinearity approximation. Estimates are given for the contributions to the nonlinear frequency shift of the SW from the two principal self-action channels: via the generation of a signal of the doubled frequency and of static surface perturbations, arising as the result of the action of a ponderomotive force. Solutions for the field envelope of the nonlinear wave are examined with regard to their stability with respect to longitudinal and transverse perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. METHODS: There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System III. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. RESULTS: For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P < 0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P < 0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient = -0.63, P < 0.01) and age (standardized beta coefficient = 0.26, P < 0.01). CONCLUSIONS: MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used event-related fMRI to investigate the neural correlates of encoding strength and word frequency effects in recognition memory. At test, participants made Old/New decisions to intermixed low (LF) and high frequency (HF) words that had been presented once or twice at study and to new, unstudied words. The Old/New effect for all hits vs. correctly rejected unstudied words was associated with differential activity in multiple cortical regions, including the anterior medial temporal lobe (MTL), hippocampus, left lateral parietal cortex and anterior left inferior prefrontal cortex (LIPC). Items repeated at study had superior hit rates (HR) compared to items presented once and were associated with reduced activity in the right anterior MTL. By contrast, other regions that had shown conventional Old/New effects did not demonstrate modulation according to memory strength. A mirror effect for word frequency was demonstrated, with the LF word HR advantage associated with increased activity in the left lateral temporal cortex. However, none of the regions that had demonstrated Old/New item retrieval effects showed modulation according to word frequency. These findings are interpreted as supporting single-process memory models proposing a unitary strength-like memory signal and models attributing the LF word HR advantage to the greater lexico-semantic context-noise associated with HF words due to their being experienced in many pre-experimental contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the findings from an evaluation of the introduction of sensory modulation (SM) in an acute mental health inpatient unit. It was expected that SM could be used to help settle patients experiencing high levels of disturbance and that as a result, there would be less need for use of more restrictive seclusion practices. The evaluation took place in a hospital in south-east Queensland, Australia. SM was introduced in one acute unit while the other served as a control. The evaluation comprised two studies. In the first study we aimed to determine whether SM reduced the level of disturbance among patients given the opportunity to use it. In the second study we aimed to find out whether the introduction of SM reduced the frequency and duration of seclusion. In study 1, we found that most patients reported marked reduction in disturbance after using SM and there was a very large effect size for the group as a whole. In study 2, we found that frequency of seclusion dropped dramatically in the unit that introduced SM but rose slightly in the unit that did not have access to SM. The change in seclusion rate was highly significant (χ2 = 49.1, df = 1, p < 0.001). Results are discussed, having reference to the limitations inherent in a naturalistic study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral energy associated with the carrier and sidebands of naturally sampled carrier based PWM can be spread by randomising the carrier (switch) half-period Tc = 1/2fc. So long as the switch duty cycle each period still correctly reflects the value of the modulating fundamental waveform as sampled during that switch period, then the fundamental component will remain undistorted. Natural sampling will ensure this occurs. Carrier based PWM can be extended to (m+1) level multilevel converter waveform generation by creating m triangular carriers, each with an equal 2*pi/m phase displacement. Alternatively the carrier disposition strategy calls for m amplitude displaced triangular carriers, each of amplitude 1/m and frequency mfc. Randomising these carrier sub-periods T0> = 1/2mfc is shown to generate (m+ 1) level PWM waveforms where the first (m-1) carrier groups are cancelled, while the remaining carrier and sidebands at multiples of mfc are spectrally spread. Numerous five level simulation and experimentally gathered randomised PWM waveforms are presented, showing the effects of the variation of the degree of randomisation, modulation depth and pulse number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative approach to digital PWM generation uses an accumulator rather than a counter to generate the carrier. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation. Several example waveforms generated using both simulation and FPGA hardware are presented.