32 resultados para Jumonji Domain-Containing Histone Demethylases
Resumo:
Introduction. There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation. Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Aim. To investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. Methods. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 in the absence or presence of (-)-bupranolol. Results. The potencies (pEC50) of (-)-CGP12177 were β2AR (9.24 ± 0.14, n = 5), β1(V230I)AR (9.07 ± 0.07, n = 10), β1(β2TMDV)AR (8.86 ± 0.10, n = 15), β1(R222Q)AR (8.09 ± 0.29, n = 6), β1AR (8.00 ± 0.11, n = 11). The affinities (pKB) of (-)-bupranolol were β2AR (9.82 ± 0.52, n = 5), β1(V230I)AR (7.64 ± 0.12, n = 8), β1(β2TMV)AR (8.06 ± 0.17, n = 8), β1(R222Q)AR (7.33 ± 0.23, n = 5), β1AR (7.23 ± 0.23, n = 5). Discussion. The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR). The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion TMDV of the β1AR contributes in part to the low affinity binding site of β1AR.
Resumo:
There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol. _______________________________________________________________________ (-)-CGP 12177 (-)-Bupranolol affinity (pKB) pEC50 vs (-)-CGP 12177 vs (-)-isoprenaline _______________________________________________________________________ β1AR 8.00 ± 0.11 (11) 7.23 ± 0.23 (5) 9.52 ± 0.28 (5) β2AR (high density) 9.24 ± 0.14 (5) 9.82 ± 0.52 (8) xPaulxxxxxxx β2AR (low density) no effect β1(β2TMV)AR 8.86 ± 0.10 (15) 8.06 ± 0.17 (8) 9.08 ± 0.22 (6) β1(V230I)AR 9.07 ± 0.07 (10) 7.64 ± 0.12 (8) 9.36 ± 0.28 (9) β1(R222Q)AR 8.09 ± 0.29 (6) 7.33 ± 0.23 (5) 9.36 ± 0.08 (6) β1(V230A)AR 7.59 ± 0.09 (6) 7.32 ± 0.24 (4) 8.62 ± 0.18 (5) _______________________________________________________________________ The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR) but not β2AR. The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol at β1AR and mutants was higher when determined with (-)-isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion V230 of the β1AR contributes in part to the low affinity binding site of β1AR. Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β2-adrenoceptor. Br J Pharmacol 137, 400−408 Kaumann AJ, Molenaar P (2008) The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336
Resumo:
Purpose. To investigate whether diurnal variation occurs in retinal thickness measures derived from spectral domain optical coherence tomography (SD-OCT). Methods. Twelve healthy adult subjects had retinal thickness measured with SD-OCT every 2 h over a 10 h period. At each measurement session, three average B-scan images were derived from a series of multiple B-scans (each from a 5 mm horizontal raster scan along the fovea, containing 1500 A-scans/B-scan) and analyzed to determine the thickness of the total retina, as well as the thickness of the outer retinal layers. Average thickness values were calculated at the foveal center, at the 0.5 mm diameter foveal region, and for the temporal parafovea (1.5 mm from foveal center) and nasal parafovea (1.5 mm from foveal center). Results. Total retinal thickness did not exhibit significant diurnal variation in any of the considered retinal regions (p > 0.05). Evidence of significant diurnal variation was found in the thickness of the outer retinal layers (p < 0.05), with the most prominent changes observed in the photoreceptor layers at the foveal center. The photoreceptor inner and outer segment layer thickness exhibited mean amplitude (peak to trough) of daily change of 7 ± 3 μm at the foveal center. The peak in thickness was typically observed at the third measurement session (mean measurement time, 13:06). Conclusions. The total retinal thickness measured with SD-OCT does not exhibit evidence of significant variation over the course of the day. However, small but significant diurnal variation occurs in the thickness of the foveal outer retinal layers.
Resumo:
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.
Resumo:
An RNA molecule with properties of a satellite RNA was found in an isolate of barley yellow dwarf virus (BYDV), RPV serotype. It is 322 nucleotides long, single-stranded, and does not hybridize to the viral genome. Dimers of the RNA, which presumably represent replicative intermediates, were able to self-cleave into monomers. In vitro transcripts from cDNA clones were capable of self-cleavage in both the plus (encapsidated) and minus orientations. The sequence flanking the minus strand cleavage site contained a consensus " hammerhead" structure, similar to those found in other self-cleaving satellite RNAs. Although related to the hammerhead structure, sequences flanking the plus strand termini showed differences from the consensus and may be folded into a different structure containing a pseudoknot. © 1991.
Resumo:
Inspired by the interesting photo- and electrochemical properties observed in bipyridinium and porphyrin containing interlocked catenanes, herein we describe new approaches towards the synthesis of related rotaxanes. Previous efforts in this domain had been hampered by the limited range of chemical reactions that are compatible with these motifs, however the use of a “click” methodology, together with a better understanding of the size of these strapped porphyrin macrocycles, resulted in the synthesis of a bipyridinium porphyrin [2]rotaxane in modest yields. X-ray crystallography of the zinc metalloporphyrin macrocycle used in this study revealed that in the solid state, these strapped porphyrins adopt a 1-dimensional coordination polymer, in which an oxygen atom in the strap of one macrocycle is coordinated to the zinc metal center in an adjacent porphyrin ring
Resumo:
The invasion of human malignant melanoma cells into the extracellular matrix (ECM) involves the accumulation of proteases at sites of ECM degradation where activation of matrix metalloproteases (MMP) occurs. Here, we show that when membrane type 1 MMP (MT-MMP) was overexpressed in RPMI7951 human melanoma cells, the cells made contact with the ECM, activated soluble and ECM-bound MMP-2, and degraded and invaded the ECM. Further experiments demonstrated the importance of localization of the MT-MMP to invadopodia. Overexpression of MT-MMP without invadopodial localization caused activation of soluble MMP-2, but did not facilitate ECM degradation or cell invasiveness. Up-regulation of endogenous MT-MMP with concanavalin A caused activation of MMP-2. However, concanavalin A treatment prevented invadopodial localization of MT-MMP and ECM degradation. Neither a truncated MT-MMP mutant lacking transmembrane (TM) and cytoplasmic domains (ΔTM(MT-MMP)), nor a chimeric MT-MMP containing the interleukin 2 receptor α chain (IL-2R) TM and cytoplasmic domains (ΔTM(MT-MMP)/TM(IL-2R)) were localized to invadopodia or exhibited ECM degradation. Furthermore, a chimera of the TM/cytoplasmic domain of MT-MMP (TM(MT-MMP)) with tissue inhibitor of MMP 1 (TIMP-1/TM(MT- MMP)) directed the TIMP-1 molecule to invadopodia. Thus, the MT-MMP TM/cytoplasmic domain mediates the spatial organization of MT-MMP into invadopodia and subsequent degradation of the ECM.
Resumo:
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.
Resumo:
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.
Resumo:
Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.