165 resultados para Intraocular-pressure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate associations between the diurnal variation in a range of corneal parameters, including anterior and posterior corneal topography, and regional corneal thickness. ----- Methods: Fifteen subjects had their corneas measured using a rotating Scheimpflug camera (Pentacam) every 3-7 hours over a 24-hour period. Anterior and posterior corneal axial curvature, pachymetry and anterior chamber depth were analysed. The best fitting corneal sphero-cylinder from the axial curvature, and the average corneal thickness for a series of different corneal regions were calculated. Intraocular pressure and axial length were also measured at each measurement session. Repeated measures ANOVA were used to investigate diurnal change in these parameters. Analysis of covariance was used to examine associations between the measured ocular parameters. ----- Results: Significant diurnal variation was found to occur in both the anterior and posterior corneal curvature and in the regional corneal thickness. Flattening of the anterior corneal best sphere was observed at the early morning measurement (p < 0.0001). The posterior cornea also underwent a significant steepening (p < 0.0001) and change in astigmatism 90/180° at this time. A significant swelling of the cornea (p < 0.0001) was also found to occur immediately after waking. Highly significant associations were found between the diurnal variation in corneal thickness and the changes in corneal curvature. ----- Conclusions: Significant diurnal variation occurs in the regional thickness and the shape of the anterior and posterior cornea. The largest changes in the cornea were typically evident upon waking. The observed non-uniform regional corneal thickness changes resulted in a steepening of the posterior cornea, and a flattening of the anterior cornea to occur at this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to investigate the influence of water loading upon intraocular pressure (IOP), ocular pulse amplitude (OPA) and axial length. Twenty one young adult subjects who were classified based on their spherical equivalent refraction as either myopes (n=11), or emmetropes (n=10) participated. Measures of IOP, OPA and ocular biometrics were collected before, and then 10, 15, 25 and 30 minutes following the ingestion of 1000 ml of water. Significant increases in both IOP and OPA were found to occur following water loading (p<0.0001), with peaks in both parameters occurring at 10 minutes after water loading (mean ± SEM increase of 2.24 ± 0.31 mmHg in IOP and 0.46 ± 0.06 mmHg in OPA). Axial length was found to reduce significantly following water loading (p=0.0005), with the largest reduction in axial length evident 10 minutes after water drinking (mean decrease 12 ± 3 µm). A significant time by refractive error group interaction (p=0.048) was found in axial length, indicative of a different pattern of change in eye length following water loading between the myopic and emmetropic populations. The largest difference in axial length change was evident at 10 minutes after water loading with a 17 ± 5 µm reduction in axial length evident in the myopes and only a 6 ± 2 µm reduction in the emmetropes. These findings illustrate significant changes in ocular parameters in young adult subjects following water loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the research program was to evaluate the heat strain, hydration status, and heat illness symptoms experienced by surface mine workers. An initial investigation involved 91 surface miners completing a heat stress questionnaire; assessing the work environment, hydration practices, and heat illness symptom experience. The key findings included 1) more than 80 % of workers experienced at least one symptom of heat illness over a 12 month period; and 2) the risk of moderate symptoms of heat illness increased with the severity of dehydration. These findings highlight a health and safety concern for surface miners, as experiencing symptoms of heat illness is an indication that the physiological systems of the body may be struggling to meet the demands of thermoregulation. To illuminate these findings a field investigation to monitor the heat strain and hydration status of surface miners was proposed. Two preliminary studies were conducted to ensure accurate and reliable data collection techniques. Firstly, a study was undertaken to determine a calibration procedure to ensure the accuracy of core body temperature measurement via an ingestible sensor. A water bath was heated to several temperatures between 23 . 51 ¢ªC, allowing for comparison of the temperature recorded by the sensors and a traceable thermometer. A positive systematic bias was observed and indicated a need for calibration. It was concluded that a linear regression should be developed for each sensor prior to ingestion, allowing for a correction to be applied to the raw data. Secondly, hydration status was to be assessed through urine specific gravity measurement. It was foreseeable that practical limitations on mine sites would delay the time between urine collection and analysis. A study was undertaken to assess the reliability of urine analysis over time. Measurement of urine specific gravity was found to be reliable up to 24 hours post urine collection and was suitable to be used in the field study. Twenty-nine surface miners (14 drillers [winter] and 15 blast crew [summer]) were monitored during a normal work shift. Core body temperature was recorded continuously. Average mean core body temperature was 37.5 and 37.4 ¢ªC for blast crew and drillers, with average maximum body temperatures of 38.0 and 37.9 ¢ªC respectively. The highest body temperature recorded was 38.4 ¢ªC. Urine samples were collected at each void for specific gravity measurement. The average mean urine specific gravity was 1.024 and 1.021 for blast crew and drillers respectively. The Heat Illness Symptoms Index was used to evaluate the experience of heat illness symptoms on shift. Over 70 % of drillers and over 80 % of blast crew reported at least one symptom. It was concluded that 1) heat strain remained within the recommended limits for acclimatised workers; and 2) the majority of workers were dehydrated before commencing their shift, and tend to remain dehydrated for the duration. Dehydration was identified as the primary issue for surface miners working in the heat. Therefore continued study focused on investigating a novel approach to monitoring hydration status. The final aim of this research program was to investigate the influence dehydration has on intraocular pressure (IOP); and subsequently, whether IOP could provide a novel indicator of hydration status. Seven males completed 90 minutes of walking in both a cool and hot climate with fluid restriction. Hydration variables and intraocular pressure were measured at baseline and at 30 minute intervals. Participants became dehydrated during the trial in the heat but maintained hydration status in the cool. Intraocular pressure progressively declined in the trial in the heat but remained relatively stable when hydration was maintained. A significant relationship was observed between intraocular pressure and both body mass loss and plasma osmolality. This evidence suggests that intraocular pressure is influenced by changes in hydration status. Further research is required to determine if intraocular pressure could be utilised as an indirect indicator of hydration status.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To investigate the interocular symmetry of ocular optical, biometric and biomechanical characteristics between the more and less ametropic eyes of myopic anisometropes. METHODS: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in the more and less ametropic eye of each subject including; axial length, ocular aberrations, intraocular pressure and corneal topography, thickness and biomechanics. Morphology of the anterior eye in primary and downward gaze was examined using custom software analysis of high resolution digital images. Ocular sighting dominance was assessed using the hole-in-the-card test. RESULTS: Mean absolute spherical equivalent anisometropia was 1.74 ± 0.74 D. There was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less ametropic fellow eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D (n = 10), the more myopic eye was the dominant sighting eye in nine of these ten subjects. Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. CONCLUSIONS: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the interocular symmetry of optical, biometric and biomechanical characteristics between the fellow eyes of myopic anisometropes. Methods: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in both eyes of each subject including; axial length, ocular aberrations, intraocular pressure (IOP), corneal topography and biomechanics. Ocular sighting dominance was also measured. Results: Mean absolute spherical equivalent anisometropia was 1.70 ± 0.74 D and there was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less myopic eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D, the more myopic eye was more likely to be the dominant sighting eye than for lower levels of anisometropia (p=0.002). Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. Conclusions: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study is to identify risk factors for developing complications following treatment of refractory glaucoma with transscleral diode laser cyclophotocoagulation (cyclodiode), to improve the safety profile of this treatment modality. METHOD: A retrospective analysis of 72 eyes from 70 patients who were treated with cyclodiode. RESULTS: The mean pre-treatment IOP was 37.0 mmHg (SD 11.0), with a mean post-treatment reduction in intraocular pressure (IOP) of 19.8 mmHg, and a mean IOP at last follow-up of 17.1 mmHg (SD 9.7). Mean total power delivered during treatment was 156.8 Joules (SD 82.7) over a mean of 1.3 treatments (SD 0.6). Sixteen eyes (22.2% of patients) developed complications from the treatment, with the most common being hypotony, occurring in 6 patients, including 4 with neovascular glaucoma. A higher pre-treatment IOP and higher mean total power delivery also were associated with higher complications. CONCLUSIONS: Cyclodiode is an effective treatment option for glaucoma that is refractory to other treatment options. By identifying risk factors for potential complications, cyclodiode can be modified accordingly for each patient to improve safety and efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that a broad range of ocular anatomical and physiological parameters undergo significant diurnal variation. However, the natural diurnal variations that occur in the length of the human eye (axial length) and their underlying causes have been less well studied. Improvements in optical methods for the measurement of ocular biometrics now allow more precise and comprehensive measurements of axial length to be performed than has previously been possible. Research from animal models also suggests a link between diurnal axial length variations and longer term myopic eye growth, and that retinal image defocus can disrupt these diurnal rhythms in axial length. This research programme has examined the diurnal variations in axial length in young normal eyes, the contributing components and the influence of optical stimuli on these changes. In the first experiment, the normal pattern and consistency of the diurnal variations in axial length were examined at 10 different times (5 measurements each day, at ~ 3-hour intervals from ~ 9 am to ~ 9 pm) over 2 consecutive days on 30 young adult subjects (15 myopes, 15 emmetropes). Additionally, variations in a range of other ocular biometric measurements such as choroidal thickness, intraocular pressure, and other ocular biometrics were also explored as potential factors that may be associated with the observed variations in axial length. To investigate the potential influence of refractive error on diurnal axial length variations, the differences in the magnitude and pattern of diurnal variations in axial length between the myopic and emmetropic subjects were examined. Axial length underwent significant diurnal variation that was consistently observed over the 2 consecutive days of measurements, with the longest axial length typically occurring during the day, and the shortest at night. Significant diurnal variations were also observed in choroidal thickness, IOP and other ocular biometrics (such as central corneal thickness, anterior chamber depth and vitreous chamber depth) of the eye. Diurnal variations in vitreous chamber depth, IOP (positive associations) and choroidal thickness (negative association) were all significantly correlated with the diurnal changes in axial length. Choroidal thickness was found to fluctuate approximately in antiphase to the axial length changes, with the average timing of the longest axial length coinciding with the thinnest choroid and vice versa. There were no significant differences in the ocular diurnal variations associated with refractive error. Given that the diurnal changes in axial length could be associated with the changes in the eye’s optical quality, whether the optical quality of the eye also undergoes diurnal variation in the same cohort of young adult myopes and emmetropes over 2 consecutive days was also examined. Significant diurnal variations were observed only in the best sphere refraction (power vector M) and in the spherical aberration of the eye over two consecutive days of testing. The changes in the eyes lower and higher order ocular optics were not significantly associated with the diurnal variations in axial length and the other measured ocular biometric parameters. No significant differences were observed in the magnitude and timing of diurnal variations in lower-order and higher-order optics associated with refractive error. Since the small natural fluctuations in the eye’s optical quality did not appear to be sufficient to influence the natural diurnal fluctuations in ocular biometric parameters, in the next experiment, the influence of monocular myopic defocus (+1.50 DS) upon the normal diurnal variations in axial length and choroidal thickness of young adult emmetropic human subjects (n=13) imposed over a 12 hour period was examined. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular myopic defocus (Day 2, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined. Significant diurnal variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days. The introduction of monocular myopic defocus led to significant reductions in the mean amplitude of diurnal change, and phase shifts in the peak timing of the diurnal rhythms in axial length and choroidal thickness. These defocus induced changes were found to be transient in nature and returned to normal the day following removal of the defocus. To further investigate the influence of optical stimuli on human diurnal rhythms, in the final experiment, the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness was examined in young adult emmetropic subjects (n=15). Similar to the previous experiment, the natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, -2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined over three consecutive days. Both axial length and choroidal thickness underwent significant diurnal variations on each of the three days. The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of diurnal change, but no change in the peak timing of diurnal rhythms in both parameters. The ocular changes associated with hyperopic defocus returned to normal, the day following removal of the defocus. This research has shown that axial length undergoes significant diurnal variation in young adult human eyes, and has shown that the natural diurnal variations in choroidal thickness and IOP are significantly associated, and may underlie these diurnal fluctuations in axial length. This work also demonstrated for the first time that exposing young human eyes to monocular myopic and hyperopic defocus leads to a significant disruption in the normal diurnal rhythms of axial length and choroidal thickness. These changes in axial length with defocus may reflect underlying mechanisms in the human eye that are involved in the regulation of longer term eye growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anisometropia represents a unique example of ocular development, where the two eyes of an individual, with an identical genetic background and seemingly subject to identical environmental influences, can grow asymmetrically to produce significantly different refractive errors. This review provides an overview of the research examining myopic anisometropia, the ocular characteristics underlying the condition and the potential aetiological factors involved. Various mechanical factors are discussed, including corneal structure, intraocular pressure and forces generated during near work that may contribute to development of anisomyopia. Potential visually guided mechanisms of unequal ocular growth are also explored, including the influence of astigmatism, accommodation, higher-order aberrations and the choroidal response to altered visual experience. The association between binocular vision, ocular dominance and asymmetric refraction is also considered, along with a review of the genetic contribution to the aetiology of myopic anisometropia. Despite a significant amount of research into the biomechanical, structural and optical characteristics of anisometropic eyes, there is still no unifying theory, which adequately explains how two eyes within the same visual system grow to different endpoints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To report the changes in corneal topography in 2 cases of ocular hypotony induced by cyclodialysis cleft after blunt trauma, which were successfully treated by argon laser photocoagulation. METHODS: For both patients, a full ophthalmic clinical examination and corneal topography were performed before and after argon laser cleft closure. RESULTS: In the first case, the corneal topography showed 3.81-D astigmatism at 96 degrees, which was reduced to 1.1 D at 124 degrees 1 week after treatment and 0.66 D at 122 degrees at 3 weeks after treatment. In the second case, the corneal astigmatism was 3.91 D at 104 degrees, which decreased to 1.44 D at 104 degrees and 0.35 D at 118 degrees at 1 week and 4 months after treatment, respectively. CONCLUSIONS: In both cases, the with-the-rule astigmatism reduced significantly after successful closure of the cleft and an increase in intraocular pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose The present study aimed to review the effect of dehydration during Ramadan fasting on the health and ocular parameters leading to changes in eye function. Methods Articles included in the study were taken from PubMed, Ovid, Web of Science and Google Scholar up to 2014. Related articles were also obtained from scientific journals on fasting and vision system. Results Dehydration and nutrition changes in Ramadan cause an increase in tear osmolarity, ocular aberration, anterior chamber depth, IOL measurement, central corneal thickness, retinal and choroidal thicknesses, and also a decrease in IOP, tear secretion, and vitreous thickness. Conclusion Much research related to the effect of dehydration on ocular parameters during Ramadan fasting exists. The findings reveal association with significant changes on ocular parameters. Thus, it seems requisite to have a comprehensive study on "fasting and ocular parameters”, which will be helpful in making decisions and giving plan to the patients.