58 resultados para Intermodal terminals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airport system is complex. Passenger dynamics within it appear to be complicate as well. Passenger behaviours outside standard processes are regarded more significant in terms of public hazard and service rate issues. In this paper, we devised an individual agent decision model to simulate stochastic passenger behaviour in airport departure terminal. Bayesian networks are implemented into the decision making model to infer the probabilities that passengers choose to use any in-airport facilities. We aim to understand dynamics of the discretionary activities of passengers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex design process of airport terminal needs to support a wide range of changes in operational facilities for both usual and unusual/emergency events. Process model describes how activities within a process are connected and also states logical information flow of the various activities. The traditional design process overlooks the necessity of information flow from the process model to the actual building design, which needs to be considered as a integral part of building design. The current research introduced a generic method to obtain design related information from process model to incorporate with the design process. Appropriate integration of the process model prior to the design process uncovers the relationship exist between spaces and their relevant functions, which could be missed in the traditional design approach. The current paper examines the available Business Process Model (BPM) and generates modified Business Process Model(mBPM) of check-in facilities of Brisbane International airport. The information adopted from mBPM then transform into possible physical layout utilizing graph theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of containers have greatly reduced handling operations at ports and at all other transfer points, thus increasing the efficiency and speed of transportation. This was done in an attempt to cut down the cost of maritime transport, mainly by reducing cargo handling and costs, and ships' time in port by speeding up handling operations. This paper discusses the major factors influencing the transfer efficiency of seaport container terminals. A network model is designed to analyse container progress in the system and applied to a seaport container terminal. The model presented here can be seen as a decision support system in the context of investment appraisal of multimodal container terminals. (C) 2000 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops an operational decision support tool for container terminal managements. The tool generates efficient schedules for shore cranes handling containers carried by mega container vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the issue of airport terminal design is examined from a novel perspective: that of the passenger rather than the airport operator. A qualitative approach, based on interviews with 199 passengers at Brisbane International Terminal was adopted. The outcomes of this research make the following three key contributions to existing knowledge: (i) identification of a paradox in the Level of Service metrics, (ii) development of a conceptual model of passenger experience and six design principles and (iii) contribution towards advancing the theoretical knowledge about passengers and their experience in airport terminals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imperatives to improve the sustainability of cities often hinge upon plans to increase urban residential density to facilitate greater reliance on sustainable forms of transport and minimise car use. However there is ongoing debate about whether high residential density land use in isolation results in sustainable transport outcomes. Findings from surveys with residents of inner-urban high density dwellings in Brisbane, Australia, suggest that solo car travel accounts for the greatest modal share of typical work journeys and attitudes toward dwelling and neighbourhood transport-related features, residential sorting factors and socio-demographics, alongside land use such as public transport availability, are significantly associated with work travel mode choice. We discuss the implications of our findings for transport policy and management including encouraging relatively sustainable intermodal forms of transport for work journeys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR). It is assumed that the source voltages contain interharmonic components in addition to fundamental components. The main aim of the DVR is to produce a set of clean balanced sinusoidal voltages across the load terminals irrespective of unbalance, distortion and voltage sag/swell in the supply voltage. An algorithm has been discussed for extracting fundamental phasor sequence components from the samples of three-phase voltages or current waveforms having integer harmonics and interharmonics. The DVR operation based on extracted components is demonstrated. The switching signal is generated using a deadbeat controller. It has been shown that the DVR is able to compensate these interharmonic components such that the load voltages are perfectly regulated. The DVR operation under deep voltage sag is also discussed. The proposed DVR operation is verified through the computer simulation studies using the MATLAB software package.