18 resultados para Integrals, Hyperelliptic
Resumo:
PURPOSE: To compare pressures generated by 2 different cement pressurisers at various locations in the proximal femur. METHODS: Two groups of 5 synthetic femurs were used, and 6 pressure sensors were placed in the femur at 20-mm intervals proximally to distally. Cement was filled into the femoral canal retrogradely using a cement gun with either the half-moon pressuriser or the femoral canal pressuriser. Maximum pressures and pressure time integrals (cumulative pressure over time) of the 2 pressurisers were compared. RESULTS: At all sensors, the half-moon pressuriser produced higher maximum pressures and pressure time integrals than the femoral canal pressuriser, but the difference was significant only at sensor 1 (proximal femur). This may result in reduced cement interdigitation in the proximal femur. CONCLUSION: The half-moon pressuriser produced higher maximum cementation pressures and pressure time integrals than the femoral canal pressuriser in the proximal femur region, which is critical for rotational stability of the implant and prevention of implant fracture. KEYWORDS: arthroplasty, replacement, hip; bone cements; femur
Resumo:
Mechanical stress is an important external factor effecting the development and maintenance of articular cartilage. The metabolite profile of diseased cartilage has been well studied but there is limited information about the variation in metabolite profile of healthy cartilage. With the importance of load in maintaining healthy cartilage, regional differences in metabolite profile associated with differences in load may provide information on how load contributes to the maintenance of healthy cartilage. HR-MAS NMR spectroscopy allows the assessment of tissue samples without modification and was used for assessing the difference in metabolic profile between the load bearing and non-load bearing regions of the bovine articular cartilage. In this preliminary study, we examined cartilage from tibia and femur of four knee joints. Sixteen pairs of 1D-NOESY spectra were acquired. Principle component analysis (PCA) identified chemical shifts responsible for variance. SBASE (AMIX) and the Human Metabolome Database were used in conjunction with previous reported cartilage data for identifying metabolites associated with the PCA results. The major contributors to load-related differences in metabolite profile were N-acetyl groups, lactate and phosphocholine peaks. Integrals of these regions were further analysed using a Student's t-test. In load bearing cartilage regions. N-acetyl groups and phosphocholine were found at significantly higher concentration (p < 0.05 and p < 0.005, respectively) in both femur and tibia, while lactate was reduced in load bearing cartilage (p < 0.005). The results of this pilot HR-MAS NMR study demonstrate its ability to provide useful metabolite information for healthy cartilage.
Resumo:
Background Several prospective studies have suggested that gait and plantar pressure abnormalities secondary to diabetic peripheral neuropathy contributes to foot ulceration. There are many different methods by which gait and plantar pressures are assessed and currently there is no agreed standardised approach. This study aimed to describe the methods and reproducibility of three-dimensional gait and plantar pressure assessments in a small subset of participants using pre-existing protocols. Methods Fourteen participants were conveniently sampled prior to a planned longitudinal study; four patients with diabetes and plantar foot ulcers, five patients with diabetes but no foot ulcers and five healthy controls. The repeatability of measuring key biomechanical data was assessed including the identification of 16 key anatomical landmarks, the measurement of seven leg dimensions, the processing of 22 three-dimensional gait parameters and the analysis of four different plantar pressures measures at 20 foot regions. Results The mean inter-observer differences were within the pre-defined acceptable level (<7 mm) for 100 % (16 of 16) of key anatomical landmarks measured for gait analysis. The intra-observer assessment concordance correlation coefficients were > 0.9 for 100 % (7 of 7) of leg dimensions. The coefficients of variations (CVs) were within the pre-defined acceptable level (<10 %) for 100 % (22 of 22) of gait parameters. The CVs were within the pre-defined acceptable level (<30 %) for 95 % (19 of 20) of the contact area measures, 85 % (17 of 20) of mean plantar pressures, 70 % (14 of 20) of pressure time integrals and 55 % (11 of 20) of maximum sensor plantar pressure measures. Conclusion Overall, the findings of this study suggest that important gait and plantar pressure measurements can be reliably acquired. Nearly all measures contributing to three-dimensional gait parameter assessments were within predefined acceptable limits. Most plantar pressure measurements were also within predefined acceptable limits; however, reproducibility was not as good for assessment of the maximum sensor pressure. To our knowledge, this is the first study to investigate the reproducibility of several biomechanical methods in a heterogeneous cohort.