45 resultados para Input-output analysis--Ireland
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.
Resumo:
Emergence is discussed in the context of a practice-based study of interactive art and a new taxonomy of emergence is proposed. The interactive art system ‘plus minus now’ is described and its relationship to emergence is discussed. ‘Plus minus now’ uses a novel method for instantiating emergent shapes. A preliminary investigation of this art system has been conducted and reveals the creation of temporal compositions by a participant. These temporal compositions and the emergent shapes are described using the taxonomy of emergence. Characteristics of emergent interactions and the implications of designing for them are discussed.
Resumo:
The SimCalc Vision and Contributions Advances in Mathematics Education 2013, pp 419-436 Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age Richard Lesh, Lyn English, Serife Sevis, Chanda Riggs … show all 4 hide » Look Inside » Get Access Abstract In modern societies in the 21st century, significant changes have been occurring in the kinds of “mathematical thinking” that are needed outside of school. Even in the case of primary school children (grades K-2), children not only encounter situations where numbers refer to sets of discrete objects that can be counted. Numbers also are used to describe situations that involve continuous quantities (inches, feet, pounds, etc.), signed quantities, quantities that have both magnitude and direction, locations (coordinates, or ordinal quantities), transformations (actions), accumulating quantities, continually changing quantities, and other kinds of mathematical objects. Furthermore, if we ask, what kind of situations can children use numbers to describe? rather than restricting attention to situations where children should be able to calculate correctly, then this study shows that average ability children in grades K-2 are (and need to be) able to productively mathematize situations that involve far more than simple counts. Similarly, whereas nearly the entire K-16 mathematics curriculum is restricted to situations that can be mathematized using a single input-output rule going in one direction, even the lives of primary school children are filled with situations that involve several interacting actions—and which involve feedback loops, second-order effects, and issues such as maximization, minimization, or stabilizations (which, many years ago, needed to be postponed until students had been introduced to calculus). …This brief paper demonstrates that, if children’s stories are used to introduce simulations of “real life” problem solving situations, then average ability primary school children are quite capable of dealing productively with 60-minute problems that involve (a) many kinds of quantities in addition to “counts,” (b) integrated collections of concepts associated with a variety of textbook topic areas, (c) interactions among several different actors, and (d) issues such as maximization, minimization, and stabilization.
Resumo:
In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.
Resumo:
Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.
Resumo:
Water reporting is becoming increasingly common amongst minerals companies. The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF), co-developed by the Centre for Water in the Minerals Industry (CWiMI), provides a standard set of terms for water reporting. The WAF was established due to the need of the minerals industry to report on its water management consistently, rather than report using company-specific terms which can cause confusion and makes company comparisons impossible. The WAF consists of two models: The Input-Output Model, which represents interactions between a site and its surrounding community and environment, and the Operational Model, which represents the interactions within a site.
Resumo:
The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry lead initiative to enable cross company communication and comparisons of water management performance. The WAF consists of two models, the Input-Output Model that represents water interactions between an operation and its surrounding environment and the Operational Model that represents water interactions within an operation. Recently, MCA member companies have agreed to use the Input-Output Model to report on their external water interactions in Australian operations, with some adopting it globally. The next step will be to adopt the Operational Model. This will expand the functionality of the WAF from corporate reporting to allowing widespread identification of inefficiencies and to connect internal and external interactions. Implementing the WAF, particularly the Operational Model, is non-trivial. It can be particularly difficult for operations that are unfamiliar with the WAF definitions and methodology, lack information pertaining to flow volumes or contain unusual configurations. Therefore, there is a need to help industry with its implementation. This work presents a step-by-step guide to producing the Operational Model. It begins by describing a methodology for implementing the Operational Model by describing the identification of pertinent objects (stores, tasks and treatments), quantification of flows, aggregation of objects and production of reports. It then discusses how the Operational Model can represent a series of challenging scenarios and how it can be connected with Input-Output Model to improve water management.
Resumo:
Communicating the mining industry’s water use is fundamental to maintaining its social license to operate but the majority of corporate reporting schemes list indicators. The Minerals Council of Australia’s Water Accounting Framework was designed to assist the minerals industry obtain consistency in its accounting method and in the definitions of terms used in water reporting. The significance of this paper is that it shows that the framework has been designed to be sufficiently robust to describe any mining/mineral related operation. The Water Accounting Framework was applied across four operations over three countries producing four commodities. The advantages of the framework were then evident through the presentation of the reports. The contextual statement of the framework was able to explain contrasting reuse efficiencies. The Input-Output statements showed that evaporation was a significant loss for most of the operations in the study which highlights a weakness of reporting schemes that focus on discharge volumes. The framework method promotes data reconciliation which proved the presence of flows that two operations in the study had neglected to provide. Whilst there are many advantages of the framework, the major points are that the reporting statements of the framework, when presented together, can better enable the public to understand water interactions at a site-level and allows for valid comparisons between sites, regardless of locale and commodity. With mining being a global industry, these advantages are best realised if there was international adoption of the framework.
Resumo:
This paper presents a new multi-output DC/DC converter topology that has step-up and step-down conversion capabilities. In this topology, several output voltages can be generated which can be used in different applications such as multilevel converters with diode-clamped topology or power supplies with several voltage levels. Steady state and dynamic equations of the proposed multi-output converter have been developed, that can be used for steady state and transient analysis. Two control techniques have been proposed for this topology based on constant and dynamic hysteresis band height control to address different applications. Simulations have been performed for different operating modes and load conditions to verify the proposed topology and its control technique. Additionally, a laboratory prototype is designed and implemented to verify the simulation results.
Resumo:
The “distractor-frequency effect” refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture–word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The wholebrain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and lowfrequency distractor words, with the former associated with a steeper slope on the time windowspanning from100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism.
Resumo:
Over the past several years, there has been resurgent interest in regional planning in North America, Europe and Australasia. Spurred by issues such as metropolitan growth, transportation infrastructure, environmental management and economic development, many states and metropolitan regions are undertaking new planning initiatives. These regional efforts have also raised significant question about governance structures, accountability and measures of effectiveness.n this paper, the authors conducted an international review of ten case studies from the United States, Canada, England, Belgium, New Zealand and Australia to explore several critical questions. Using qualitative data template, the research team reviewed plans, documents, web sites and published literature to address three questions. First, what are the governance arrangements for delivering regional planning? Second, what are the mechanisms linking regional plans with state plans (when relevant) and local plans? Third, what means and mechanisms do these regional plans use to evaluate and measure effectiveness? The case study analysis revealed several common themes. First, there is an increasing focus on goverance at the regional level, which is being driven by a range of trends, including regional spatial development initiatives in Europe, regional transportation issues in the US, and the growth of metropolitan regions generally. However, there is considerable variation in how regional governance arrangements are being played out. Similarly, there is a range of processes being used at the regional level to guide planning that range from broad ranging (thick) processes to narrow and limited (thin) approaches. Finally, evaluation and monitoring of regional planning efforts are compiling data on inputs, processes, outputs and outcomes. Although there is increased attention being paid to indicators and monitoring, most of it falls into outcome evaluations such as Agenda 21 or sustainability reporting. Based on our review we suggest there is a need for increased attention on input, process and output indicators and clearer linkages of these indicators in monitoring and evaluation frameworks. The focus on outcome indicators, such as sustainability indicators, creates feedback systems that are too long-term and remote for effective monitoring and feedback. Although we found some examples of where these kinds of monitoring frameworks are linked into a system of governance, there is a need for clearer conceptual development for both theory and practice.