483 resultados para Information search – models


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Principal topic: Is habitual entrepreneurship different? Answering this is important to the field, however there is little systematic evidence, thus far. We addresses this by examining the role experience plays at three possible points of difference: motivations, actions and expectations; and by comparing those currently in the process of starting a business with those who have recent success in business creation. Firstly, we assess the balance of opportunity versus necessity motivation, internally versus externally stimulated decision processes and future growth aspirations. Literature suggests novices are more likely motivated to nascency out of necessity, and favour a manageable business size, while habitual entrepreneurs are more likely motivated by internally stimulated or idea driven processes. Secondly, we examine actions undertaken by successful experienced founders during gestation, contrasting ‘information collection’ and ‘opportunity definition’. Drawing on prior research we expect novices more likely to have enacted ‘information search’ while habitual entrepreneurs enact ‘opportunity definition’. Thirdly, we examine perceptions of venture success, where findings on overconfidence suggest that habitual entrepreneurs expect a higher chance of success for their ventures, while inexperience leads novices to underestimate the difficulty of entrepreneurial survival. Method: Empirical evidence to test these conjectures was drawn from a screened random sample of over 1100 Australian nascent and newly started business ventures. This information was collected during 2007/8 using a telephone survey. Results and Implications: Why do habitual entrepreneurs keep coming back? Findings suggest that while the pursuit of opportunity is shared by novice and experienced entrepreneur alike, consideration of repeat entrepreneurship may be motivated by a desire for growth. While idea driven motivations might not delineate a distinction during nascency, it does seem to be a factor contributing to the success of young firms. This warrants further research. How do habitual entrepreneurs behave differently? It seems they act to clearly define market opportunities as a matter of priority during venture gestation. What effect does entrepreneurial experience have on future expectations? Clearly a sense of realism is drawn over the difficulties that might be faced, and accords more circumspect judgements of venture survival. This finding informs practitioners considering entrepreneurship for the first time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human facial expression is a complex process characterized of dynamic, subtle and regional emotional features. State-of-the-art approaches on facial expression recognition (FER) have not fully utilized this kind of features to improve the recognition performance. This paper proposes an approach to overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D patches are extracted to represent the subtle and regional features, and then inputted into patch matching operations for capturing the dynamic features. Experimental results show a significant performance improvement of the proposed approach due to the use of the dynamic features. Performance comparison with pervious work also confirms that the proposed approach achieves the highest CRR reported to date on the JAFFE database and a top-level performance on the Cohn-Kanade (CK) database.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is concerned with consumer involvement in fashion clothing. Amidst the consumer objects that facilitate everyday life, fashion clothing is an important and meaningful object for many consumers. In the extant consumer literature few studies have attempted to examine fashion clothing involvement, particularly in terms of its causes and outcomes. This study then focuses on building a reliable nomological network to bring a greater understanding to this facet of consumer behaviour. To achieve this, materialism and gender are examined as drivers of fashionclothinginvolvement. Recreational shopper identity, ongoing information search, market mavenism, and purchase decision involvement are explored as outcomes of fashion clothing involvement. Data were gathered using an Australian Generation Y sample resulting in 200 completed questionnaires. The results support the study’s model and its hypotheses and show that materialism and gender are significant drivers of fashion clothing involvement. While also, recreational shopper identity, ongoing information search, market mavenism and purchase decision involvement are significant outcomes of fashion clothing involvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many existing information retrieval models do not explicitly take into account in- formation about word associations. Our approach makes use of rst and second order relationships found in natural language, known as syntagmatic and paradigmatic associ- ations, respectively. This is achieved by using a formal model of word meaning within the query expansion process. On ad hoc retrieval, our approach achieves statistically sig- ni cant improvements in MAP (0.158) and P@20 (0.396) over our baseline model. The ERR@20 and nDCG@20 of our system was 0.249 and 0.192 respectively. Our results and discussion suggest that information about both syntagamtic and paradigmatic associa- tions can assist with improving retrieval eectiveness on ad hoc retrieval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many existing information retrieval models do not explicitly take into account in- formation about word associations. Our approach makes use of rst and second order relationships found in natural language, known as syntagmatic and paradigmatic associ- ations, respectively. This is achieved by using a formal model of word meaning within the query expansion process. On ad hoc retrieval, our approach achieves statistically sig- ni cant improvements in MAP (0.158) and P@20 (0.396) over our baseline model. The ERR@20 and nDCG@20 of our system was 0.249 and 0.192 respectively. Our results and discussion suggest that information about both syntagamtic and paradigmatic associa- tions can assist with improving retrieval eectiveness on ad hoc retrieval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impacts of online collaboration and networking among consumers on social media (SM) websites which are featuring user generated content in a form of product reviews, ratings and recommendations (PRRR) as an emerging information source is the focus of this research. The proliferation of websites where consumers are able to post the PRRR and share them with other consumers has altered the marketing environment in which companies, marketers and advertisers operate. This cross-sectional study explored consumers’ attitudes and behaviour toward various information sources (IS), used in the information search phase of the purchasing decision-making process. The study was conducted among 300 international consumers. The results were showing that personal and public IS were far more reliable than commercial. The findings indicate that traditional marketing tools are no longer viable in the SM milieu.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How influential is the Australian Document Computing Symposium (ADCS)? What do ADCS articles speak about and who cites them? Who is the ADCS community and how has it evolved? This paper considers eighteen years of ADCS, investigating both the conference and its community. A content analysis of the proceedings uncovers the diversity of topics covered in ADCS and how these have changed over the years. Citation analysis reveals the impact of the papers. The number of authors and where they originate from reveal who has contributed to the conference. Finally, we generate co-author networks which reveal the collaborations within the community. These networks show how clusters of researchers form, the effect geographic location has on collaboration, and how these have evolved over time.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A recurring question for cognitive science is whether functional neuroimaging data can provide evidence for or against psychological theories. As posed, the question reflects an adherence to a popular scientific method known as 'strong inference'. The method entails constructing multiple hypotheses (Hs) and designing experiments so that alternative possible outcomes will refute at least one (i.e., 'falsify' it). In this article, after first delineating some well-documented limitations of strong inference, I provide examples of functional neuroimaging data being used to test Hs from rival modular information-processing models of spoken word production. 'Strong inference' for neuroimaging involves first establishing a systematic mapping of 'processes to processors' for a common modular architecture. Alternate Hs are then constructed from psychological theories that attribute the outcome of manipulating an experimental factor to two or more distinct processing stages within this architecture. Hs are then refutable by a finding of activity differentiated spatially and chronometrically by experimental condition. When employed in this manner, the data offered by functional neuroimaging may be more useful for adjudicating between accounts of processing loci than behavioural measures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

- BACKGROUND Access to information on the features and outcomes associated with the various models of maternity care available in Australia is vital for women's informed decision-making. This study sought to identify women's preferences for information access and decision-making involvement, as well as their priority information needs, for model of care decision-making. - METHODS A convenience sample of adult women of childbearing age in Queensland, Australia were recruited to complete an online survey assessing their model of care decision support needs. Knowledge on models of care and socio-demographic characteristics were also assessed. - RESULTS Altogether, 641 women provided usable survey data. Of these women, 26.7 percent had heard of all available models of care before starting the survey. Most women wanted access to information on models of care (90.4%) and an active role in decision-making (99.0%). Nine priority information needs were identified: cost, access to choice of mode of birth and care provider, after hours provider contact, continuity of carer in labor/birth, mobility during labor, discussion of the pros/cons of medical procedures, rates of skin-to-skin contact after birth, and availability at a preferred birth location. This information encompassed the priority needs of women across age, birth history, and insurance status subgroups. - CONCLUSIONS This study demonstrates Australian women's unmet needs for information that supports them to effectively compare available options for model of maternity care. Findings provide clear direction on what information should be prioritized and ideal channels for information access to support quality decision-making in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.