49 resultados para In-row spacing
Resumo:
This paper provides an overview of the Healthy Weight Program as delivered by the Bidgerdii Aboriginal and Torres Strait Islander Community Health Service through its Aboriginal Health Workers in the Central Highlands of Central Queensland, Australia.
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.
Resumo:
An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.
Resumo:
This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
This paper investigates the effects of lane-changing in driver behavior by measuring (i) the induced transient behavior and (ii) the change in driver characteristics, i.e., changes in driver response time and minimum spacing. We find that the transition largely consists of a pre-insertion transition and a relaxation process. These two processes are different but can be reasonably captured with a single model. The findings also suggest that lane-changing induces a regressive effect on driver characteristics: a timid driver (characterized by larger response time and minimum spacing) tends to become less timid and an aggressive driver less aggressive. We offer an extension to Newell’s car-following model to describe this regressive effect and verify it using vehicle trajectory data.
Resumo:
Background Women change contraception as they try to conceive, space births, and limit family size. This longitudinal analysis examines contraception changes after reproductive events such as birth, miscarriage or termination among Australian women born from 1973 to 1978 to identify potential opportunities to increase the effectiveness of contraceptive information and service provision. Methods Between 1996 and 2009, 5,631 Australian women randomly sampled from the Australian universal health insurance (Medicare) database completed five self-report postal surveys. Three longitudinal logistic regression models were used to assess the associations between reproductive events (birth only, birth and miscarriage, miscarriage only, termination only, other multiple events, and no new event) and subsequent changes in contraceptive use (start using, stop using, switch method) compared with women who continued to use the same method. Results After women experienced only a birth, or a birth and a miscarriage, they were more likely to start using contraception. Women who experienced miscarriages were more likely to stop using contraception. Women who experienced terminations were more likely to switch methods. There was a significant interaction between reproductive events and time indicating more changes in contraceptive use as women reach their mid-30s. Conclusion Contraceptive use increases after the birth of a child, but decreases after miscarriage indicating the intention for family formation and spacing between children. Switching contraceptive methods after termination suggests these pregnancies were unintended and possibly due to contraceptive failure. Women’s contact with health professionals around the time of reproductive events provides an opportunity to provide contraceptive services.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.
Performance of elite seated discus throwers in F30s classes : part II: does feet positioning matter?
Resumo:
Background: Studies on the relationship between performance and design of the throwing frame have been limited. Part I provided only a description of the whole body positioning. Objectives: The specific objectives were (a) to benchmark feet positioning characteristics (i.e. position, spacing and orientation) and (b) to investigate the relationship between performance and these characteristics for male seated discus throwers in F30s classes. Study Design: Descriptive analysis. Methods: A total of 48 attempts performed by 12 stationary discus throwers in F33 and F34 classes during seated discus throwing event of 2002 International Paralympic Committee Athletics World Championships were analysed in this study. Feet positioning was characterised by tridimensional data of the front and back feet position as well as spacing and orientation corresponding to the distance between and the angle made by both feet, respectively. Results: Only 4 of 30 feet positioning characteristics presented a coefficient correlation superior to 0.5, including the feet spacing on mediolateral and anteroposterior axes in F34 class as well as the back foot position and feet spacing on mediolateral axis in F33 class. Conclusions: This study provided key information for a better understanding of the interaction between throwing technique of elite seated throwers and their throwing frame.
Resumo:
Purpose. Contrast adaptation may induce an error signal for emmetropization. This research aims to determine whether reading causes contrast adaptation in children and, if so, to determine whether myopes exhibit greater contrast adaptation than emmetropes. Methods. Baseline contrast sensitivity was determined in 34 emmetropic and 34 spectacle-corrected myopic children for 0.5, 1.2, 2.7, 4.4, and 6.2 cycles per degree (cpd) horizontal sine-wave gratings. Effects of near tasks on contrast sensitivity were determined during periods spent looking at a 6.2 cpd horizontal grating and during periods spent reading lines of English text, with 1.2 cpd row frequency and 6 cpd stroke frequency. Results. Both emmetropic and myopic groups (mean ± SD; age, 10.3 ± 1.4 years) showed reduced contrast sensitivity during both near tasks, with greatest overall adaptation at 6.2 cpd. Adaptation induced by viewing the grating (0.15 ± 0.17 log unit [40%]; range, 0.07-0.27 log unit) was significantly greater than adaptation induced by reading text (0.11 ± 0.18 log unit [29%], 0.08-0.16 log unit) (F(1,594) = 10.7; P = 0.001). Myopic children showed significantly greater adaptation across the tasks (0.15 ± 0.18 log unit [42%]) than emmetropic children (0.10 ± 0.16 log unit [26%]) (F(1,66) = 7.30; P = 0.009), with the greatest difference occurring at 4.4 cpd (mean, 0.11 log unit [30%]). Conclusions. Grating and reading tasks induced contrast adaptation; viewing horizontal gratings induced greater adaptation than reading, and myopes exhibited greater adaptation than emmetropes. Contrast adaptation effects may underlie findings of prolonged near work being associated with myopia. However, our research does not show whether this is consequential or causal.
Resumo:
In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...
Resumo:
Since March 2010 in Queensland, legislation has specified the type of restraint and seating row for child passengers under 7 years according to age. The following study explored regional parents’ child restraint practices and the influence of their health beliefs over these. A brief intercept interview was verbally administered to a convenience sample of parent-drivers (n = 123) in Toowoomba in February 2010, after the announcement of changes to legislation but prior to enforcement. Parents who agreed to be followed-up were then reinterviewed after the enforcement (May-June 2010). The Health Beliefs Model was used to gauge beliefs about susceptibility to crashing, children being injured in a crash, and likely severity of injuries. Self-efficacy and perceptions about barriers to, and benefits of, using age-appropriate restraints with children, were also assessed. Results: There were very high levels of rear seating reported for children (initial interview 91%; follow-up 100%). Dedicated child restraint use was 96.9% at initial interview, though 11% were deemed inappropriate for the child’s age. Self-reported restraint practices for children under 7 were used to categorise parental practices into ‘Appropriate’ (all children in age-appropriate restraint and rear seat) or ‘Inappropriate’ (≥1 child inappropriately restrained). 94% of parents were aware of the legislation, but only around one third gave accurate descriptions of the requirements. However, 89% of parents were deemed to have ‘Appropriate’ restraint practices. Parents with ‘Inappropriate’ practices were significantly more likely than those with ‘Appropriate’ practices to disagree that child restraints provide better protection for children in a crash than adult seatbelts. For self-efficacy, parents with ‘Appropriate’ practices were more likely than those with ‘Inappropriate’ practices to report being ‘completely confident’ about installing child restraints. The results suggest that efforts to increase the level of appropriate restraint should attempt to better inform them about the superior protection offered by child restraints compared with seat belts for children.