87 resultados para In situ Combustion. heavy oil. numerical simulation. reservoir modeling
Resumo:
Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order timefractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.
Resumo:
A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micro-environment in host tissues. The hybrid based model includes the continuum part, such as the distributions of oxygen and vascular endothelial growth factors (VEGFs), and the discrete part of tumour cells (TCs) and blood vessel networks. The simulation shows the dynamic process of avascular tumour growth from a few initial cells to an equilibrium state with varied vessel networks. After a phase of rapidly increasing numbers of the TCs, more and more host vessels collapse due to the stress caused by the growing tumour. In addition, the consumption of oxygen expands with the enlarged tumour region. The study also discusses the effects of certain factors on tumour growth, including the density and configuration of preexisting vessel networks and the blood oxygen content. The model enables us to examine the relationship between early tumour growth and hypoxic micro-environment in host tissues, which can be useful for further applications, such as tumour metastasis and the initialization of tumour angiogenesis.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy
Resumo:
A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.
Resumo:
The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively
Resumo:
The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
Convective downburst wind storms generate the peak annual gust wind speed for many parts of the non-cyclonic world at return periods of importance for ultimate limit state design. Despite this there is little clear understanding of how to appropriately design for these wind events given their significant dissimilarities to boundary layer winds upon which most design is based. To enhance the understanding of wind fields associated with these storms a three-dimensional numerical model was developed to simulate a multitude of idealised downburst scenarios and to investigate their near-ground wind characteristics. Stationary and translating downdraft wind events in still and sheared environments were simulated with baseline results showing good agreement with previous numerical work and full-scale observational data. Significant differences are shown in the normalised peak wind speed velocity profiles depending on the environmental wind conditions in the vicinity of the simulated event. When integrated over the height of mid- to high rise structures, all simulated profiles are shown to produce wind loads smaller than an equivalent 10 m height matched open terrain boundary layer profile. This suggests that for these structures the current design approach is conservative from an ultimate loading standpoint. Investigating the influence of topography on the structure of the simulated near-ground downburst wind fields, it is shown that these features amplify wind speeds in a manner similar to that expected for boundary layer winds, but the extent of amplification is reduced. The level of reduction is shown to be dependent on the depth of the simulated downburst outflow.
Resumo:
Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.
Resumo:
Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.
Resumo:
The present study deals with two dimensional, numerical simulation of railway track supporting system subjected to dynamic excitation force. Under plane strain condition, the coupled finite-infinite elements to represent the near and far field stress distribution and thin layer interface element was employed to model the interfacial behavior between sleepers and ballast. To account for the relative debonding, slipping and crushing that could take place in the contact area between the sleepers and ballast, modified Mohr-Coulomb criterion was adopted. Furthermore an attempt has been made to consider the elasto-plastic material non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and supporting materials. Based on the proposed physical and constitutive modeling a code has been developed for dynamic loads. The applicability of the developed F.E code has been demonstrated by analyzing a real railway supporting structure.