22 resultados para Imputation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effectiveness of a telephone-delivered behavioral weight loss and physical activity intervention targeting Australian primary care patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Pragmatic randomized controlled trial of telephone counseling (n = 151) versus usual care (n = 151). Reported here are 18-month (end-of-intervention) and 24-month (maintenance) primary outcomes of weight, moderate-to-vigorous-intensity physical activity (MVPA; via accelerometer), and HbA1c level. Secondary outcomes include dietary energy intake and diet quality, waist circumference, lipid levels, and blood pressure. Data were analyzed via adjusted linear mixed models with multiple imputation of missing data. RESULTS: Relative to usual-care participants, telephone counseling participants achieved modest, but significant, improvements in weight loss (relative rate [RR] -1.42% of baseline body weight [95% CI -2.54 to -0.30% of baseline body weight]), MVPA (RR 1.42 [95% CI 1.06-1.90]), diet quality (2.72 [95% CI 0.55-4.89]), and waist circumference (-1.84 cm [95% CI -3.16 to -0.51 cm]), but not in HbA1c level (RR 0.99 [95% CI 0.96-1.02]), or other cardio-metabolic markers. None of the outcomes showed a significant change/deterioration over the maintenance period. However, only the intervention effect for MVPA remained statistically significant at 24 months. CONCLUSIONS: The modest improvements in weight loss and behavior change, but the lack of changes in cardio-metabolic markers, may limit the utility, scalability, and sustainability of such an approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most genome-wide association studies to date have been performed in populations of European descent, but there is increasing interest in expanding these studies to other populations. The performance of genotyping chips in Asian populations is not well established. Therefore, we sought to test the performance of widely used fixed-marker, genome-wide association studies chips in the Han Chinese population. Non-HapMap Chinese samples (n = 396) were genotyped using the Illumina OmniExpress and Affymetrix 6.0 platforms, whereas a subset also were genotyped using the Immunochip. Genotyped markers from the Affymetrix 6.0 and Illumina OmniExpress were used for full genome imputation based on the HapMap 2 JPT+CHB (Japanese from Tokyo, Japan and Chinese from Beijing, China) reference panel. The concordance between markers genotypes for the three platforms was very high whether directly genotyped or genotyped and imputed single nucleotide polymorphisms (SNPs; .99.8% for directly genotyped and .99.5% for genotyped and imputed SNPs, respectively) were compared. The OmniExpress chip data enabled more SNPs to be imputed, particularly SNPs with minor allele frequency .5%. The OmniExpress chip achieved better coverage of HapMap SNPs than the Affymetrix 6.0 chip (73.6% vs. 65.9%, respectively, for minor allele frequency .5%). The Affymetrix 6.0 and Illumina OmniExpress chip have similar genotyping accuracy and provide similar accuracy of imputed SNPs. The OmniExpress chip however provides better coverage of Asian HapMap SNPs, although its coverage of HapMap SNPs is moderate. © 2013 Jiang et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.