83 resultados para ION EXCHANGE MATERIALS
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.
Resumo:
Today, there are growing concerns about the presence of environmental pollutants in many parts of the world. In particular, a lot of attention has been drawn to the levels of water and soil contaminants (de Paiva et al., 2008). The majority of these contaminants consist of NOCs (non-ionic organic compounds) and can enter our waterways through industrial activities, mining operations, crop and animal production, waste disposal and accidental leakage (de Paiva et al., 2008; Park et al., 2011). Therefore, there is an increased interest in the synthesis of new materials that can be used to remove potentially carcinogenic and toxic water contaminants. Smectite type organoclays are widely used in numerous applications, such as sorbent agents for environmental remediation, due to their unique properties (Jiunn-Fwu et al., 1990; Sheng et al., 1996; Zhou et al., 2007; Bektas et al., 2011; Park et al., 2011). This investigation focuses on beidellite (SBId-1), which belongs to the smectite clay family. Their properties include high cation exchange capacity (CEC), swelling properties, porous, high surface area and consequential strong adsorption/absorption capacity (Xi et al., 2007). However, swelling clays in general are not an effective sorbent agent in nature due to their hydrophilic properties. The hydrophilic properties of the clay can be changed to organophilic by intercalating a cationic surfactant. Many applications of organoclays are strongly dependent on their structural properties and hence, a better understanding of the configuration and structural change of organoclay is crucial. Organoclays were synthesised through ion exchange of 21CODTMA (MW: 392.5 g mol-1) and characterised using XRD and FTIR spectroscopy. This study investigates the structural and conformational changes of beidellite intercalated with octadecyltrimethylammonium bromide.
Resumo:
Magnetic zeolite NaA with different Fe3O4 loadings was prepared by hydrothermal synthesis based on metakaolin and Fe3O4. The effect of added Fe3O4 on the removal of ammonium by zeolite NaA was investigated by varying the Fe3O4 loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe3O4 apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudosecond-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe3O4. According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution.
Resumo:
In this study, organoclays were prepared through ion exchange of a single cationic surfactant, hexadecyltrimethylammonium bromide and characterised by a range of methods including X-ray diffraction (XRD) and thermogravimetric analysis. Changes in the surface properties of montmorillonite and the organoclays were observed and the basal spacings of organoclays with and without p-nitrophenol were determined using XRD. The thermal stability of both organoclays were measured using thermogravimetry. As the surfactant loading increased, the expanded basal spacings were observed, and different molecular configurations of surfactant were identified. When the surfactant loading exceeded 1.0 CEC, surfactant molecules tend to adsorb strongly on the clay surface and this resulted in increased affinity to organic compounds. The adsorbed p-nitrophenol and the surfactant decomposed simultaneously. Hence, the surfactant molecules and adsorbed p-nitrophenol are important in determining the thermal stabilities of organoclays. This study enhances the understanding of the structure and adsorption properties of organoclays and has further implications for the application of organoclays as filter materials for the removal of organic pollutants in aqueous solutions.
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
The exchange of iron species from iron (III) chloride solutions with a strong acid cation resin has been investigated in relation to a variety of water and wastewater applications. A detailed equilibrium isotherm analysis was conducted wherein models such as Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov, Sips and Brouers-Sotolongo were applied to the experimental data. An important conclusion was that both the bottle-point method and solution normality used to generate the ion exchange equilibrium information influenced which sorption model fitted the isotherm profiles optimally. Invariably, the calculated value for the maximum loading of iron on strong acid cation resin was substantially higher than the value of 47.1 g/kg of resin which would occur if one Fe3+ ion exchanged for three “H+” sites on the resin surface. Consequently, it was suggested that above pH 1, various iron complexes sorbed to the resin in a manner which required less than 3 sites per iron moiety. Column trials suggested that the iron loading was 86.6 g/kg of resin when 1342 mg/L Fe (III) ions in water were flowed at 31.7 bed volumes per hour. Regeneration with 5 to 10 % HCl solutions reclaimed approximately 90 % of exchange sites.
Resumo:
This paper is concerned with the study of the equilibrium exchange of ammonium ions with two natural zeolite samples sourced in Australia from Castle Mountain Zeolites and Zeolite Australia. A range of sorption models including Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov and Brouers–Sotolongo were applied in order to gain an insight as to the exchange process. In contrast to most previous studies, non-linear regression was used in all instances to determine the best fit of the experimental data. Castle Mountain natural zeolite was found to exhibit higher ammonium capacity than Zeolite Australia material when in the freshly received state, and this behavior was related to the greater amount of sodium ions present relative to calcium ions on the zeolite exchange sites. The zeolite capacity for ammonium ions was also found to be dependent on the solution normality, with 35–60% increase inuptake noted when increasing the ammonium concentration from 250 to 1000 mg/L. The optimal fit ofthe equilibrium data was achieved by the Freundlich expression as confirmed by use of Akaikes Information Criteria. It was emphasized that the bottle-point method chosen influenced the isotherm profile in several ways, and could lead to misleading interpretation of experiments, especially if the constant zeolite mass approach was followed. Pre-treatment of natural zeolite with acid and subsequently sodium hydroxide promoted the uptake of ammonium species by at least 90%. This paper highlighted the factors which should be taken into account when investigating ammonium ion exchange with natural zeolites.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.
Resumo:
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.
Resumo:
High resolution thermogravimetric analysis (TGA) has attracted much attention in the synthesis of organoclays and its applications. In this study, organoclays were synthesised through ion exchange of a single cationic surfactant for sodium ions, and characterised by methods including X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The changes of surface properties in montmorillonite and organoclays intercalated with surfactant were determined using XRD through the changes in the basal spacing. The thermogravimetric analysis (TGA) was applied in this study to investigate more information of the configuration and structural changes in the organoclays with thermal decomposition. There are four different decompositions steps in differential thermogravimetric (DTG) curves. The obtained TG steps are relevant to the arrangement of the surfactant molecules intercalated in montmorillonite and the thermal analysis indicates the thermal stability of surfactant modified clays. This investigation provides new insights into the properties of organoclays and is important in the synthesis and processing of organoclays for environmental applications.