203 resultados para INFRARED-ABSORPTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of NIR spectroscopy has been successfully demonstrated in the present study of smithsonite minerals. The fundamental observations in the NIR spectra, in addition to the anions of OH- and CO32- are Fe and Cu in terms of cation content. These ions exhibit broad absorption bands ranging from 13000 to 7000cm-1 (0.77 to 1.43 µm). One broad diagnostic absorption feature centred at 9000 cm-1 (1.11 µm) is the result of ferrous ion spin allowed transition, (5T2g ® 5Eg). The splitting of this band (>1200 cm-1) is a common feature in all the spectra of the studied samples. The light green coloured sample from Namibia show two Cu(II) bands in NIR at 8050 and 10310 cm-1 (1.24 and 0.97 µm) are assigned to 2B1g ® 2A1g and 2B1g ® 2B2g transitions. The effects of structural cations substitution (Ca2+, Fe2+, Cu2+, Cd2+ and Zn2+) on band shifts in the electronic spectra1 region of 11000-7500 cm-1 (0.91-1.33 µm) and vibrational modes of OH- and CO32- anions in 7300 to 4000 cm-1 (1.37-2.50 µm) region were used to distinguish between the smithsonites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal transformations of natural calcium oxalate dihydrate known in mineralogy as weddellite have been undertaken using a combination of Raman microscopy and infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified three mass loss steps at 114, 422 and 592 °C. In the first mass loss step water is evolved only, in the second and third steps carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Weddellite is the phase in the temperature range up to the pre-dehydration temperature of 97 °C. At this temperature, the phase formed is whewellite (calcium oxalate monohydrate) and above 114 °C the phase is the anhydrous calcium oxalate. Above 422 °C, calcium carbonate is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 650 °C. Changes in the position and intensity of the C=O and C---C stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.