219 resultados para Highway Motor Vehicles.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
Airborne fine particles were collected at a suburban site in Queensland, Australia between 1995 and 2003. The samples were analysed for 21 elements, and Positive Matrix Factorisation (PMF), Preference Ranking Organisation METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) were applied to the data. PROMETHEE provided information on the ranking of pollutant levels from the sampling years while PMF provided insights into the sources of the pollutants, their chemical composition, most likely locations and relative contribution to the levels of particulate pollution at the site. PROMETHEE and GAIA found that the removal of lead from fuel in the area had a significant impact on the pollution patterns while PMF identified 6 pollution sources including: Railways (5.5%), Biomass Burning (43.3%), Soil (9.2%), Sea Salt (15.6%), Aged Sea Salt (24.4%) and Motor Vehicles (2.0%). Thus the results gave information that can assist in the formulation of mitigation measures for air pollution.
Resumo:
Transportation disadvantaged groups, in the previous studies, are defined as those who are low income earners, family dependent, limited access to private motor vehicles and public transport services, and also those who oblige to spend relatively more time and money on their trips. Additionally those disable, young and elderly are considered among the natural groups of transportation disadvantaged. Although in general terms this definition seems correct, it is not specific enough to become a common universal definition that could apply to all urban contexts. This paper investigates whether travel difficulty perceptions vary and so does the definition of transportation disadvantaged in socio-culturally different urban contexts. For this investigation the paper undertakes a series of statistical analysis in the case study of Yamaga, Japan, and compares the findings with a previous case study, where the same methodology, hypothesis, and assumptions were utilized in a culturally and demographically different settlement of Aydin, Turkey. After comparing the findings observed in Aydin with the statistical analysis results of Yamaga, this paper reveals that there can be no explicitly detailed universal definition of transportation disadvantaged. The paper concludes by stating characteristics of transportation disadvantage is not globally identical, and policies and solutions that work in a locality may not show the same results in another socio-cultural context.
Resumo:
Bicycle injuries, particularly those resulting from single bicycle crashes, are underreported in both police and hospital records. Data on cyclist characteristics and crash circumstances are also often lacking. As a result, the ability to develop comprehensive injury prevention policies is hampered. The aim of this study was to examine the incidence, severity, cyclist characteristics, and crash circumstances associated with cycling injuries in a sample of cyclists in Queensland, Australia. A cross-sectional study of Queensland cyclists was conducted in 2009. Respondents (n=2056) completed an online survey about their cycling experiences, including cycling injuries. Logistic regression modelling was used to examine the associations between demographic and cycling behaviour variables with experiencing cycling injuries in the past year, and, separately, with serious cycling injuries requiring a trip to a hospital. Twenty-seven percent of respondents (n=545) reported injuries, and 6% (n=114) reported serious injuries. In multivariable modelling, reporting an injury was more likely for respondents who had cycled <5 years, compared to ≥10 years (p<0.005); cycled for competition (p=0.01); or experienced harassment from motor vehicle occupants (p<0.001). There were no gender differences in injury incidence, and respondents who cycled for transport did not have an increased risk of injury. Reporting a serious injury was more likely for those whose injury involved other road users (p<0.03). Along with environmental and behavioural approaches for reducing collisions and near-collisions with motor vehicles, interventions that improve the design and maintenance of cycling infrastructure, increase cyclists’ skills, and encourage safe cycling behaviours and bicycle maintenance will also be important for reducing the overall incidence of cycling injuries.
Resumo:
The literature abounds with descriptions of failures in high-profile projects and a range of initiatives has been generated to enhance project management practice (e.g., Morris, 2006). Estimating from our own research, there are scores of other project failures that are unrecorded. Many of these failures can be explained using existing project management theory; poor risk management, inaccurate estimating, cultures of optimism dominating decision making, stakeholder mismanagement, inadequate timeframes, and so on. Nevertheless, in spite of extensive discussion and analysis of failures and attention to the presumed causes of failure, projects continue to fail in unexpected ways. In the 1990s, three U.S. state departments of motor vehicles (DMV) cancelled major projects due to time and cost overruns and inability to meet project goals (IT-Cortex, 2010). The California DMV failed to revitalize their drivers’ license and registration application process after spending $45 million. The Oregon DMV cancelled their five year, $50 million project to automate their manual, paper-based operation after three years when the estimates grew to $123 million; its duration stretched to eight years or more and the prototype was a complete failure. In 1997, the Washington state DMV cancelled their license application mitigation project because it would have been too big and obsolete by the time it was estimated to be finished. There are countless similar examples of projects that have been abandoned or that have not delivered the requirements.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.
Resumo:
Motor vehicle crashes are a leading cause of death among young people. Fourteen percent of adolescents aged 13-14 report passenger-related injuries within three months. Intervention programs typically focus on young drivers and overlook passengers as potential protective influences. Graduated Driver Licensing restricts passenger numbers, and this study focuses on a complementary school-based intervention to increase passengers’ personal- and peer-protective behavior. The aim of this research was to assess the impact of the curriculum-based injury prevention program, Skills for Preventing Injury in Youth (SPIY), on passenger-related risk-taking and injuries, and intentions to intervene in friends’ risky road behavior. SPIY was implemented in Grade 8 Health classes and evaluated using survey and focus group data from 843 students across 10 Australian secondary schools. Intervention students reported less passenger-related risk-taking six months following the program. Their intention to protect friends from underage driving also increased. The results of this study show that a comprehensive, school-based program targeting individual and social changes can increase adolescent passenger safety.
Resumo:
Singapore crash statistics from 2001 to 2006 show that the motorcyclist fatality and injury rates per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as victims of other road users is also about 43%. The objective of this study is to identify the factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the binary logit model to differentiate between at-fault and not-at-fault cases and the analysis is further categorized by the location of the crashes, i.e., at intersections, on expressways and at non-intersections. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Time trend effect shows that not-at-fault crash involvement of motorcyclists has increased with time. The likelihood of night time crashes has also increased for not-at-fault crashes at intersections and expressways. The presence of surveillance cameras is effective in reducing not-at-fault crashes at intersections. Wet road surfaces increase at-fault crash involvement at non-intersections. At intersections, not-at-fault crash involvement is more likely on single lane roads or on median lane of multi-lane roads, while on expressways at-fault crash involvement is more likely on the median lane. Roads with higher speed limit have higher at-fault crash involvement and this is also true on expressways. Motorcycles with pillion passengers or with higher engine capacity have higher likelihood of being at-fault in crashes on expressways. Motorcyclists are more likely to be at-fault in collisions involving pedestrians and this effect is higher at night. In multi-vehicle crashes, motorcyclists are more likely to be victims than at fault. Young and older riders are more likely to be at-fault in crashes than middle-aged group of riders. The findings of this study will help to develop more targeted countermeasures to improve motorcycle safety and more cost-effective safety awareness program in motorcyclist training.
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Like other major cities, Brisbane (Australia) has adopted policies to increase residential densities to meet the liveability goal of decreasing car dependence. This objective hinges on urban neighbourhoods being amenity-rich spaces, reducing the need for residents to leave their neighbourhood for everyday living. While older people are attracted to urban settings, there has been little empirical evidence linking liveability satisfaction with older people's use of urban neighbourhoods. Using a case study approach employing qualitative (diaries, in-depth interviews) and quantitative (Global Positioning Systems and Geographical Information Systems mapping) methods,this paper explores the effect of the neighbourhood environment and its influence on liveability for older urban people. Reliance on motor vehicles and issues with availability and access to local amenities inhibit local participation for older people. Highlighting these issues furthers our understanding of the landscape planning and design factors that make urban neighbourhoods more liveable for older residents.
Resumo:
Walking as an out-of-home mobility activity is recognised for its contribution to healthy and active ageing. The environment can have a powerful effect on the amount of walking activity undertaken by older people, thereby influencing their capacity to maintain their wellbeing and independence. This paper reports the findings from research examining the experiences of neighbourhood walking for 12 older people from six different inner-city high density suburbs, through analysis of data derived from travel diaries, individual time/space activity maps (created via GPS tracking over a seven-day period and GIS technology), and in-depth interviews. Reliance on motor vehicles, the competing interests of pedestrians and cyclists on shared pathways and problems associated with transit systems, public transport, and pedestrian infrastructure emerged as key barriers to older people venturing out of home on foot. GPS and GIS technology provide new opportunities for furthering understanding of the out-of-home mobility of older populations.