437 resultados para Hidden Markov-models
Resumo:
Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Particularly, highway design reduces the driving task mainly to a lane-keeping one. It contributes to hypovigilance and road crashes as drivers are often not aware that their driving behaviour is impaired. Monotony increases fatigue, however, the fatigue community has mainly focused on endogenous factors leading to fatigue such as sleep deprivation. This paper focuses on the exogenous factor monotony which contributes to hypovigilance. Objective measurements of the effects of monotonous driving conditions on the driver and the vehicle's dynamics is systematically reviewed with the aim of justifying the relevance of the need for a mathematical framework that could predict hypovigilance in real-time. Although electroencephalography (EEG) is one of the most reliable measures of vigilance, it is obtrusive. This suggests to predict from observable variables the time when the driver is hypovigilant. Outlined is a vision for future research in the modelling of driver vigilance decrement due to monotonous driving conditions. A mathematical model for predicting drivers’ hypovigilance using information like lane positioning, steering wheel movements and eye blinks is provided. Such a modelling of driver vigilance should enable the future development of an in-vehicle device that detects driver hypovigilance in advance, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create drowsiness or hypovigilance and impair the ability to react to critical events. Identifying vigilance decrement in monotonous conditions has been a major subject of research, but no research to date has attempted to predict this vigilance decrement. This pilot study aims to show that vigilance decrements due to monotonous tasks can be predicted through mathematical modelling. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants’ performance. This task models the driver’s ability to cope with unpredicted events by performing the expected action. A Hidden Markov Model (HMM) is proposed to predict participants’ hypovigilance. Driver’s vigilance evolution is modelled as a hidden state and is correlated to an observable variable: the participant’s reactions time. This experiment shows that the monotony of the task can lead to an important vigilance decline in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.
Resumo:
The cascading appearance-based (CAB) feature extraction technique has established itself as the state-of-the-art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the visual speech recognition application also provide similar improvements for visual speaker recognition. A further study is conducted comparing synchronous HMM (SHMM) based fusion of CAB visual features and traditional perceptual linear predictive (PLP) acoustic features to show that higher complexity inherit in the SHMM approach does not appear to provide any improvement in the final audio-visual speaker verification system over simpler utterance level score fusion.
Resumo:
Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification
Resumo:
This paper describes a vision-based airborne collision avoidance system developed by the Australian Research Centre for Aerospace Automation (ARCAA) under its Dynamic Sense-and-Act (DSA) program. We outline the system architecture and the flight testing undertaken to validate the system performance under realistic collision course scenarios. The proposed system could be implemented in either manned or unmanned aircraft, and represents a step forward in the development of a “sense-and-avoid” capability equivalent to human “see-and-avoid”.
Resumo:
We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.