138 resultados para H-plane sectoral horns
Resumo:
Objective: To investigate the validity of the Trendelenburg test (TT) using an ultrasound-guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in hip abductor muscle (HABD) strength would result in the theorized mechanical compensatory strategies measured during the TT. Design: Quasi-experimental. Setting: Hospital. Participants: Convenience sample of 9 healthy men. Only participants with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Interventions: Ultrasound-guided nerve block. Main Outcome Measures: Hip abductor muscle strength (percent body weight [%BW]), contralateral pelvic drop (cPD), change in contralateral pelvic drop (Delta cPD), ipsilateral hip adduction, and ipsilateral trunk sway (TRUNK) measured in degrees. Results: The median age and weight of the participants were 31 years (interquartile range [IQR], 22-32 years) and 73 kg (IQR, 67-81 kg), respectively. An average 52% reduction of HABD strength (z = 2.36, P = 0.02) resulted after the UNB. No differences were found in cPD or Delta cPD (z = 0.01, P = 0.99, z = 20.67, P = 0.49, respectively). Individual changes in biomechanics showed no consistency between participants and nonsystematic changes across the group. One participant demonstrated the mechanical compensations described by Trendelenburg. Conclusions: The TT should not be used as a screening measure for HABD strength in populations demonstrating strength greater than 30% BW but should be reserved for use with populations with marked HABD weakness. Clinical Relevance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Introduction: The Trendelenburg Test (TT) is used to assess the functional strength of the hip abductor muscles (HABD), their ability to control frontal plane motion of the pelvis, and the ability of the lumbopelvic complex to transfer load into single leg stance. Rationale: Although a standard method to perform the test has been described for use within clinical populations, no study has directly investigated Trendelenburg’s hypotheses. Purpose: To investigate the validity of the TT using an ultrasound guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in HABD strength would result in the theorized mechanical compensatory strategies measured during the TT. Methods: Quasi-experimental design using a convenience sample of nine healthy males. Only subjects with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Force dynamometry was used to evaluation HABD strength (%BW). 2D mechanics were used to evaluate contralateral pelvic drop (cMPD), change in contralateral pelvic drop (∆cMPD), ipsilateral hip adduction (iHADD) and ipsilateral trunk sway (TRUNK) measured in degrees (°). All measures were collected prior to and following a UNB on the superior gluteal nerve performed by an interventional radiologist. Results: Subjects’ age was median 31yrs (IQR:22-32yrs); and weight was median 73kg (IQR:67-81kg). An average 52% reduction of HABD strength (z=2.36,p=0.02) resulted following the UNB. No differences were found in cMPD or ∆cMPD (z=0.01,p= 0.99, z=-0.67,p=0.49). Individual changes in biomechanics show no consistency between subjects and non-systematic changes across the group. One subject demonstrated the mechanical compensations described by Trendelenburg. Discussion: The TT should not be used as screening measure for HABD strength in populations demonstrating strength greater than 30%BW but reserved for use with populations with marked HABD weakness. Importance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.
Resumo:
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.
Resumo:
Thin-walled steel plates subjected to in-plane compression develop two types of local plastic mechanism, namely the roof-shaped mechanism and the so-called flip-disc mechanism, but the intriguing question of why two mechanisms should develop was not answered until recently. It was considered that the location of first yield point shifted from the centre of the plate to the midpoint of the longitudinal edge depending on the b/t ratio, imperfection level, and yield stress of steel, which then decided the type of mechanism. This paper has verified this hypothesis using analysis and laboratory experiments. An elastic analysis using Galerkin's method to solve Marguerre's equations was first used to determine the first yield point, based on which the local plastic mechanism/imperfection tolerance tables have been developed which give the type of mechanism as a function of b/t ratio, imperfection level and yield stress of steel. Laboratory experiments of thin-walled columns verified the imperfection tolerance tables and thus indirectly the hypothesis. Elastic and rigid-plastic curves were them used to predict the effect on the ultimate load due to the change of mechanism. A finite element analysis of selected cases also confirmed the results from simple analyses and experiments.
Resumo:
The prime aim of this research project is to evaluate the performance of confined masonry walls under in-plane shear with a view to contributing to the national masonry design standard through a set of design clauses. This aim stems from the criticisms of the current provisions of the in-plane shear capacity equations in the Australian Masonry Standard AS3700 (2011) being highly non-conservative. This PhD thesis is an attempt to address this gap in the knowledge through systematic investigation of the key parameters that affects the in-plane shear strength of the masonry walls through laboratory experiments and extensive finite element analyses.
Resumo:
Large deformation finite element analysis has been carried out to investigate the stress-strain fields ahead of a growing crack for compact tension .a=W D 0:5/ and three-point bend .a=W D 0:1 and 0:5/ specimens under plane stress condition. The crack growth is controlled by the experimental J -integral resistance curves measured by Sun et al. The results indicate that the distributions of opening stress, equivalent stress and equivalent strain ahead of a growing crack are not sensitive to specimen geometry. For both stationary and growing cracks, similar distributions of opening stress and triaxiality can be found along the ligament. During stable crack growth, the crack-tip opening displacement (CTOD) resistance curve and the cohesive fracture energy in the fracture process zone are independent of specimen geometry and may be suitable criteria for characterizing stable crack growth in plane stress.
Resumo:
A combined experimental and numerical program was conducted to study the in-plane shear behaviour of hollow concrete masonry panels containing reinforced grout cores. This paper is focused on the numerical program. A two dimensional macromodelling strategy was used to simulate the behaviour of the confined masonry (CM) shear panels. Both the unreinforced masonry and the confining element were modelled using macromasonry properties and the steel reinforcement was modelled as an embedded truss element located within the grout using perfectly bonded constraint. The FE model reproduced key behaviours observed in the experiments, including the shear strength, the deformation and the crack patterns of the unconfined and confined masonry panels. The predictions of the validated model were used to evaluate the existing in-plane shear expressions available in the national masonry standards and research publications.
Resumo:
INTRODUCTION Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. METHODS Existing low dose CT scans were used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of female AIS patients with right-sided thoracic curves. Image processing software, ImageJ (v1.45 NIH USA) was used to reconstruct the torso segments and subsequently measure the torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral joint moments at each vertebral level were found by summing each of the torso segment masses above the required joint and multiplying it by the perpendicular distance to the centre of the disc. RESULTS AND DISCUSSION Twenty patients were included in this study with a mean age of 15.0±2.7 years and a mean Cobb angle 52±5.9°. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) %. Mean segmental torso mass increased inferiorly from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint moments during relaxed standing were typically 5-7Nm at the apex of the curve (Figure 1), with the highest apex joint of 7Nm. CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing [1]. Therefore joint moments produced by gravity will be greater than those calculated here. CONCLUSIONS Coronal plane joint moments as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. The body mass distributions calculated in this study can be used to estimate joint moments derived using other imaging modalities such as MRI and subsequently determine if a relationship exists between joint moments and progressive vertebral deformity.
Resumo:
We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain.
Resumo:
Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.
Resumo:
Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.
Resumo:
Compact arrays enable various applications such as antenna beam-forming and multi-input, multi-output (MIMO) schemes on limited-size platforms. The reduced element spacing in compact arrays introduces high levels of mutual coupling which can affect the performance of the adaptive array. This coupling causes a mismatch at the input ports, which disturbs the performance of the individual elements in the array and affects the implementation of beam steering. In this article, a reactive decoupling network for a 3-element monopole array is used to establish port isolation while simultaneously matching input impedance at each port to the system impendence. The integrated decoupling and matching network is incorporated in the ground plane of the monopole array, providing further development scope for beamforming using phase shifters and power splitters in double-layered circuits.
Resumo:
Partially grouted masonry walls subjected to in-plane shear exhibit a complex behaviour because of the influence of the aspect ratio, the pre-compression, the grouting pattern, the ratios of the horizontal and the vertical reinforcements, the boundary conditions and the characteristics of the constituent materials. The existing in-plane shear expressions for the partially grouted masonry are formulated as sum of strength of three parameters, namely, the masonry, the reinforcement and the axial force. The parameter ‘masonry’ includes the wall aspect ratio and the masonry compressive strength; the aspect ratio of the unreinforced panel inscribed into the grouted cores and bond beams are not considered, although failure is often dominated by these unreinforced masonry panels. This paper describes the dominance of these panels, particularly those that are squat, to the shear capacity of whole of shear walls. Further, the current design formulae are shown highly un-conservative by many researchers; this paper provides a potential reason for this un-conservativeness. It is shown that by including an additional term of the unreinforced panel aspect ratio a rational design formula could be established. This new expression is validated with independent test results reported in the literature – both Australian and overseas; the predictions are shown to be conservative.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.