24 resultados para Grinding (comminution)
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.
Resumo:
Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.
Resumo:
Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3-aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of –CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at 66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).
Resumo:
This paper aims to trace surface evolution in the wheel-rail interface using data obtained from a twin-disc testing machine and the surface replication technique. Changes in the surface profile of the rail testing disc are explicitly analysed according to the wear mechanism, which helps elaborate a better understanding of the attrition of asperities during the wearing-in process of surface modification. The surface profile amplitude was seen to decrease during the initial running-in phase of the experiment cycle, and after reaching a saturation value, the profile amplitude then increased. Ultimately the results show that grinding will roughen the rail surface and the wheel-rail contact conditions will then remove this surface damage to some saturation value of the profile height. The variation in the rail surface profile beyond this point is then only dependant on the contact conditions which exist between the wheel and rail during normal operation.
Resumo:
Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.
Resumo:
Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.
Resumo:
Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.