22 resultados para Glue.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental investigation of the flexural bond strength of thin bed concrete masonry. Flexural bond strength of masonry depends upon the mortar type, the techniques of dispersion of mortar and the surface texture (roughness) of concrete blocks. There exists an abundance of literature on the conventional masonry bond containing 10mm thick mortar; however, the 2mm polymer flue mortar bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural bond strength of thin bed concrete masonry. Three types of polymer modified glue mortars, three surface textures and four techniques of mortar dispersion have been used in preparing 108 four point flexural test specimens. All mortar joints have been carefully prepared to ensure achievement of 2mm layer polymer mortar thickness on average. The results exhibit the flexural bond strength of thin bed concrete masonry much is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of the cellular glycoprotein vitronectin acts as a biological ‘glue’ and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knock-out mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that vitronectin occupies a role in the earliest events of thrombogenesis and tissue repair. That role is as a foundation upon which the thrombus grows in an organised structure. In addition to closing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators and provides a provisional scaffold for the repairing tissue. In the absence of vitronectin (e.g. VN-KO animal) this cascade is disrupted before it begins. Our data demonstrates that a wide variety of biologically active species associate with VN. While initial studies were focused on mitogens, other classes of bioactives (e.g. glycosaminoglycans, metalloproteinases) are now also known to specifically interact with VN. Many of these interactions are long-lived, often resulting in multi-protein complexes, while others are stable for prolonged periods. Multiprotein complexes provide several advantages: prolonging molecular interaction; sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular / biological responses. We contend that these, or equivalent, multi-protein complexes mediate vitronectin functionality in vivo. It is also likely that many of the species demonstrated to associate with vitronectin in vitro, also associate with vitronectin in vivo in similar multi-protein complexes. Thus the predominant biological function of vitronectin is that of a master controller of the extracellular environment; informing, and possibly instructing cells ‘where’ to behave, ‘when’ to behave, and ‘how’ to behave (i.e. appropriately for the current circumstance).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives Laser tissue repair usually relies on hemoderivate protein solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited tensile strength of repaired tissue, poor solder solubility, and brittleness prior to laser denaturation. Furthermore, the required activation temperature of albumin solders (between 65 and 70°C) can induce significant thermal damage to tissue. In this study, we report on the design of a new polysaccharide adhesive for tissue repair that overcomes some of the shortcomings of traditional solders. Study Design/Materials and Methods Flexible and insoluble strips of chitosan adhesive (elastic modulus ~6.8 Mpa, surface area ~34 mm2, thickness ~20 µm) were bonded onto rectangular sections of sheep intestine using a diode laser (continuous mode, 120 ± 10 mW, = λ 808 nm) through a multimode optical fiber with an irradiance of ~15 W/cm2. The adhesive was based on chitosan and also included indocyanin green dye (IG). The temperature between tissue and adhesive was measured using a small thermocouple (diameter ~0.25 mm) during laser irradiation. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Murine fibroblasts were cultured in extracted media from chitosan adhesive to assess cytotoxicity via cell growth inhibition in a 48 hours period. Results Chitosan adhesive successfully repaired intestine tissue, achieving a tensile strength of 14.7 ± 4.7 kPa (mean ± SD, n = 30) at a temperature of 60-65°C. Media extracted from chitosan adhesive showed negligible toxicity to fibroblast cells under the culture conditions examined here. Conclusion A novel chitosan-based adhesive has been developed, which is insoluble, flexible, and adheres firmly to tissue upon infrared laser activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides classical criteria such as cost and overall organizational efficiency, an organization’s ability to being creative and to innovate is of increasing importance in markets that are overwhelmed with commodity products and services. Business Process Management (BPM) as an approach to model, analyze, and improve business processes has been successfully applied not only to enhance performance and reduce cost but also to facilitate business imperatives such as risk management and knowledge management. Can BPM also facilitate the management of creativity? We can find many examples where enterprises unintentionally reduced or even killed creativity and innovation for the sake of control, performance, and cost reduction. Based on the experiences we have made within case studies with organizations from the creative industries (film industry, visual effects production, etc.,) we believe that BPM can be a facilitator providing the glue between creativity management and well-established business principles. In this article we introduce the notions of creativity-intensive processes and pockets of creativity as new BPM concepts. We further propose a set of exemplary strategies that enable process owners and process managers to achieve creativity without sacrificing creativity. Our aim is to set the baseline for further discussions on what we call creativity-oriented BPM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigelâ„¢, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bridge girder bearings rest on pedestals to transfer the loading safely to the pier headstock. In spite of the existence of industry guidelines, due to construction complexities, such guidelines are often overlooked. Further, there is paucity of research on the performance of pedestals, although their failure could cause exorbitant maintenance costs. Although reinforced concrete pedestals are recommended in the industry design guidelines, unreinforced concrete and/ or epoxy glue pedestals are provided due to construction issues; such pedestals fail within a very short period of service. With a view to understanding the response of pedestals subject to monotonic loading, a three-dimensional nonlinear explicit finite element micro-model of unreinforced and reinforced concrete pedestals has been developed. Contact and material nonlinearity have been accounted for in the model. It is shown that the unreinforced concrete pedestals suffer from localised edge stress singularities, the failure of which was comparable to those in the field. The reinforced concrete pedestals, on the other hand, distribute the loading without edge stress singularity, again conforming to the field experience.