169 resultados para Glow discharge plasmas


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO 3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10^10 to 10^14 cm−3, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10^4 Pa (up to 105 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term ‘plasmon’ was first coined in 1956 to describe collective electronic oscillations in solids which were very similar to electronic oscillations/surface waves in a plasma discharge (effectively the same formulae can be used to describe the frequencies of these physical phenomena). Surface waves originating in a plasma were initially considered to be just a tool for basic research, until they were successfully used for the generation of large-area plasmas for nanoscale materials synthesis and processing. To demonstrate the synergies between ‘plasmons’ and ‘plasmas’, these large-area plasmas can be used to make plasmonic nanostructures which functionally enhance a range of emerging devices. The incorporation of plasma-fabricated metal-based nanostructures into plasmonic devices is the missing link needed to bridge not only surface waves from traditional plasma physics and surface plasmons from optics, but also, more topically, macroscopic gaseous and nanoscale metal plasmas. This article first presents a brief review of surface waves and surface plasmons, then describe how these areas of research may be linked through Plasma Nanoscience showing, by closely looking at the essential physics as well as current and future applications, how everything old, is new, once again.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene and carbon nanotubes are the most promising nanomaterials for application in various modern nanodevices. The successful production of the nanotubes and graphene in a single process was achieved by using a magnetically enhanced arc discharge in helium atmosphere between carbon and metal electrodes. A 3-D fluid model has been used to investigate the discharge parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 degrees C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H(2) plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm(-3)) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 degrees C. The use of higher (up to 500 degrees C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower (approximately 20 mW cm(-3)) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of transitions between the electrostatic and electromagnetic discharge modes of the low-frequency (460 kHz) inductively coupled plasma (LF ICP) reactor is studied. A series of images of plasma glows in Ar and N2 gases taken in the process of continuous variation of the input power confirms the discharge bistability and hysteresis. The operation regimes and parameters making the LF ICP reactor attractive for materials synthesis and processing applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of inductively coupled Ar/CH 4/H 2 plasmas in the plasma enhanced chemical vapor deposition (PECVD) of self-assembled carbon nanostructures (CN) was presented. A spatially averaged (global) discharge model was developed to study the densities and fluxes of the radical neutrals and charged species, the effective electron temperature, and methane conversion factors under various conditions. It was found that the deposited cation fluxes in the PECVD of CNs generally exceed those of the radical neutrals. The agreement with the optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS) was also derived through numerical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.