98 resultados para Global warming
Resumo:
Engaging in a close analysis of legal and political discourse, this chapter considers conflicts over intellectual property and climate change in three key arenas: climate law; trade law; and intellectual property law. In this chapter, it is argued that there is a need to overcome the political stalemates and deadlocks over intellectual property and climate change. It is essential that intellectual property law engage in a substantive fashion with the matrix of issues surrounding fossil fuels, clean technologies, and climate change at an international level. First, this chapter examines the debate over intellectual property and climate change under the auspices of the United Nations Framework Convention on Climate Change 1992, and the establishment of the UNFCCC Climate Technology Centre and Network. It recommends that the technology mechanism should address and deal with matters of intellectual property management and policy. Second, the piece examines the discussion of global issues in the World Intellectual Property Organization, WIPO GREEN. It supports the proposal for a Global Green Patent Highway to allow for the fast-tracking of intellectual property applications in respect of green technologies. Third, the chapter investigates the dispute in the TRIPS Council at the World Trade Organization over intellectual property, climate change, and development. This section focuses upon the TRIPS Agreement 1994. This chapter calls for a Joint Declaration on Intellectual Property and Climate Change from the UNFCCC, WIPO, and the WTO. The paper concludes that intellectual property should be reformed as part of a larger effort to promote climate justice. Rather than adopt a fragmented, piecemeal approach in various international institutions, there is a need for a co-ordinated and cohesive response to intellectual property in an age of runaway, global climate change. Patent law should be fossil fuel free. Intellectual property should encourage research, development, and diffusion of renewable energy and clean technologies. It is submitted that intellectual property law reform should promote climate justice in line with Mary Robinson’s Declaration on Climate Justice 2013.
Resumo:
A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.
Resumo:
The likely phenological responses of plants to climate warming can be measured through experimental manipulation of field sites, but results are rarely validated against year-to-year changes in climate. Here, we describe the response of 1-5 years of experimental warming on phenology (budding, flowering and seed maturation) of six common subalpine plant species in the Australian Alps using the International Tundra Experiment (ITEX) protocol.2. Phenological changes in some species (particularly the forb Craspedia jamesii) were detected in experimental plots within a year of warming, whereas changes in most other species (the forb Erigeron bellidioides, the shrub Asterolasia trymalioides and the graminoids Carex breviculmis and Poa hiemata) did not develop until after 2-4 years; thus, there appears to be a cumulative effect of warming for some species across multiple years.3. There was evidence of changes in the length of the period between flowering and seed maturity in one species (P. hiemata) that led to a similar timing of seed maturation, suggesting compensation.4. Year-to-year variation in phenology was greater than variation between warmed and control plots and could be related to differences in thawing degree days (particularly, for E. bellidioides) due to earlier timing of budding and other events under warmer conditions. However, in Carex breviculmis, there was no association between phenology and temperature changes across years.5. These findings indicate that, although phenological changes occurred earlier in response to warming in all six species, some species showed buffered rather than immediate responses.6. Synthesis. Warming in ITEX open-top chambers in the Australian Alps produced earlier budding, flowering and seed set in several alpine species. Species also altered the timing of these events, particularly budding, in response to year-to-year temperature variation. Some species responded immediately, whereas in others the cumulative effects of warming across several years were required before a response was detected.
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
As Brisbane grows, it is rapidly becoming akin to any other city in the world with its typical stark grey concrete buildings rather than being characterized by its subtropical element of abundant green vegetation. Living Walls can play a vital role in restoring the loss of this distinct local element of a subtropical city. This paper will start by giving an overview of the traditional methods of greening subtropical cities with the use of urban parks and street trees. Then, by examining a recent heat imaging map of Brisbane, the effect of green cover with the built environment will be shown. With this information from a macro level, this paper will proceed to examine a typical urban block within the Central Business District (CBD) to demonstrate urban densification in relation to greenery in the city. Then, this paper will introduce the new technology where Living Walls have the untapped potential of effectively greening a city where land is scarce and given over to high density development. Living Walls incorporated into building design does not only enhance the subtropical lifestyle that is being lost in modern cities but is also an effective means for addressing climate change. This paper will serve as a preliminary investigation into the effects of incorporating Living Walls into cities. By growing a Living Wall onto buildings, we can be part of an effective design solution for countering global warming and at the same time, Living Walls can return local character to subtropical cities, thereby greening the city as well.
Resumo:
James Lovelock has been one of the most influential and controversial environmentalists of the modern era, and his lastest book, The Revenge of Gaia, is perhaps his most controversial. Lovelock foreshadows a bleak future of drastic temperature increases, due to global warming, with the prospect that only a remnant of humanity might survive in Antarctica. The work also entails an interesting commentary on environmental philosophy and politics. Lovelock (like Lord Taverne)is scathing about the shortcomings of eco-fundamentalism, notably evident with the Greens, and argues that instead what we need is a pragmatic environmentalism to deal with our global challenges.
Resumo:
Background and Objective: As global warming continues, the frequency, intensity and duration of heatwaves are likely to increase. However, a heatwave is unlikely to be defined uniformly because acclimatisation plays a significant role in determining the heat-related impact. This study investigated how to best define a heatwave in Brisbane, Australia. Methods: Computerised datasets on daily weather, air pollution and health outcomes between 1996 and 2005 were obtained from pertinent government agencies. Paired t-tests and case-crossover analyses were performed to assess the relationship between heatwaves and health outcomes using different heatwave definitions. Results: The maximum temperature was as high as 41.5°C with a mean maximum daily temperature of 26.3°C. None of the five commonly-used heatwave definitions suited Brisbane well on the basis of the health effects of heatwaves. Additionally, there were pros and cons when locally-defined definitions were attempted using either a relative or absolute definition for extreme temperatures. Conclusion: The issue of how to best define a heatwave is complex. It is important to identify an appropriate definition of heatwave locally and to understand its health effects.
Resumo:
Presentation given by Dr John S Cook at the Queensland Spatial Conference 2008, Global Warming: What’s Happening in Paradise?, held at Holiday Inn, Surfers Paradise,Queensland from 17-19 July, 2008 This presentation provides some semblance of an information infrastructure that is aligned generally to problems of governance in complex organisations.
Resumo:
Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.
Resumo:
This is not a book about the perils of global warming and its impact on children, although climate change provides an impetus. Nor is it a response to environmental issues that shifts responsibilities from adults to children, asking them to fix what we leave behind. Instead, it is a book of positive ideas and actions that shows what early childhood educational communities can do when children, teachers and parents work together to address, arguably, one of the most serious issues of our time. It is about what early childhood education – and specifically, early childhood teacher education – can and must do to play its part in helping societies move towards sustainable living. It is about the emerging field of early childhood education for sustainability (ECEfS).
Resumo:
The global financial crisis, global pandemics, global warming and peak oil are indicative of a world facing major environmental, social and economic problems. At the same time, world population continues to rise and global inequalities deepen. Children are the most vulnerable to the impacts of unsustainable living with specific harms arising because of their physical and cognitive vulnerabilities. Nevertheless, children do not have to be victims in the face of these challenges. Education, including early childhood education, has an important role to in building resilience and capabilities in children that equip them as active and informed citizens now and in the future and who are capable of contributing to healthy and sustainable ways of living. Drawing on educational change literature, action research, education for sustainability, health promotion and systems theory, this paper outlines three strategies that can help reorient early childhood education towards sustainability. One strategy is the adoption of whole centre approaches to sustainability and education for sustainability. This means working across the whole of a centre’s operations – curriculum and pedagogy, physical and social environments, its partnerships and community connections. The second strategy – applied in conjunction with the first – is the use of action research to investigate the early childhood setting and to create the desired changes. The third strategy is the adoption of systems thinking as a way of leveraging support and momentum for change so that education for sustainability goes beyond the initiatives of individual teachers and centres, and becomes a systems-wide imperative.
Resumo:
Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.