395 resultados para Genetic differentiation
Resumo:
Background: Kallikrein 15 (KLK15)/Prostinogen is a plausible candidate for prostate cancer susceptibility. Elevated KLK15 expression has been reported in prostate cancer and it has been described as an unfavorable prognostic marker for the disease. Objectives: We performed a comprehensive analysis of association of variants in the KLK15 gene with prostate cancer risk and aggressiveness by genotyping tagSNPs, as well as putative functional SNPs identified by extensive bioinformatics analysis. Methods and Data Sources: Twelve out of 22 SNPs, selected on the basis of linkage disequilibrium pattern, were analyzed in an Australian sample of 1,011 histologically verified prostate cancer cases and 1,405 ethnically matched controls. Replication was sought from two existing genome wide association studies (GWAS): the Cancer Genetic Markers of Susceptibility (CGEMS) project and a UK GWAS study. Results: Two KLK15 SNPs, rs2659053 and rs3745522, showed evidence of association (p, 0.05) but were not present on the GWAS platforms. KLK15 SNP rs2659056 was found to be associated with prostate cancer aggressiveness and showed evidence of association in a replication cohort of 5,051 patients from the UK, Australia, and the CGEMS dataset of US samples. A highly significant association with Gleason score was observed when the data was combined from these three studies with an Odds Ratio (OR) of 0.85 (95% CI = 0.77-0.93; p = 2.7610 24). The rs2659056 SNP is predicted to alter binding of the RORalpha transcription factor, which has a role in the control of cell growth and differentiation and has been suggested to control the metastatic behavior of prostate cancer cells. Conclusions: Our findings suggest a role for KLK15 genetic variation in the etiology of prostate cancer among men of European ancestry, although further studies in very large sample sets are necessary to confirm effect sizes.
Resumo:
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India-wild) and seven cultured (Hawaii-1, Hawaii-2, India-cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India-cultured populations. Significant deficiency in heterozygotes was detected in the India-cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.
Resumo:
This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the β-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the β-actin and 28S markers, with the exception of Sus scrofa (pig) β-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.
Resumo:
Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn's disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn's disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.66 x 10-10, odds ratio (OR) = 0.74, 95% CI:0.68-0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6×10-4. OR = 0.86 (95% CI:0.79-0.93); rs744166, P = 2.6×10-5, OR = 0.84 (95% CI:0.77-0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2×10-5, OR = 0.65 (95% CI:0.54-0.79)), and further associations were detected for IL12B (rs10045431, P = 5.261025, OR = 0.83 (95% CI:0.76-0.91)), CDKAL1 (rs6908425, P = 1.1×10-4, OR = 0.82 (95% CI:0.74-0.91)), LRRK2/MUC19 (rs11175593, P = 9.9×10-5, OR = 1.92 (95% CI: 1.38-2.67)), and chr13q14 (rs3764147, P = 5.9×10-4, OR = 1.19 (95% CI: 1.08-1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn's disease and further highlight the involvement of common risk variants across multiple diseases.
Resumo:
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation. © 2011 The Author(s).
Resumo:
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
The fleshy shrimp, Fenneropenaeus chinensis, is the family of Penaeidae and one of the most economically important marine culture species in Korea. However, its genetic characteristics have never been studied. In this study, a total of 240 wild F. chinensis individuals were collected from four locations as follows: Narodo (NRD, n = 60), Beopseongpo (BSP, n = 60), Chaesukpo (CSP, n = 60), and Cheonsuman (CSM, n = 60). Genetic variability and the relationships among four wild F. chinensis populations were analyzed using 13 newly developed microsatellite loci. Relatively high levels of genetic variability (mean allelic richness = 16.87; mean heterozygosity = 0.845) were found among localities. Among the 52 population loci, 13 showed significant deviation from the Hardy–Weinberg equilibrium. Neighbor-joining, principal coordinate, and molecular variance analyses revealed the presence of three subpopulations (NRD, CSM, BSP and CSP), which was consistent with clustering based on genetic distance. The mean observed heterozygosity values of the NRD, CSM, BSP, and CSP populations were 0.724, 0.821, 0.814, and 0.785 over all loci, respectively. These genetic variability and differentiation results of the four wild populations can be applied for future genetic improvement using selective breeding and to design suitable management guidelines for Korean F. chinensis culture.
Resumo:
Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased