213 resultados para Fuzzy linear programming
Resumo:
This paper reports on a replication of earlier studies into a possible hierarchy of programming skills. In this study, the students from whom data was collected were at a university that had not provided data for earlier studies. Also, the students were taught the programming language Python, which had not been used in earlier studies. Thus this study serves as a test of whether the findings in the earlier studies were specific to certain institutions, student cohorts, and programming languages. Also, we used a non–parametric approach to the analysis, rather than the linear approach of earlier studies. Our results are consistent with the earlier studies. We found that students who cannot trace code usually cannot explain code, and also that students who tend to perform reasonably well at code writing tasks have also usually acquired the ability to both trace code and explain code.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.
Resumo:
This paper presents a novel approach to road-traffic control for interconnected junctions. With a local fuzzy-logic controller (FLC) installed at each junction, a dynamic-programming (DP) technique is proposed to derive the green time for each phase in a traffic-light cycle. Coordination parameters from the adjacent junctions are also taken into consideration so that organized control is extended beyond a single junction. Instead of pursuing the absolute optimization of traffic delay, this study examines a practical approach to enable the simple implementation of coordination among junctions, while attempting to reduce delays, if possible. The simulation results show that the delay per vehicle can be substantially reduced, particularly when the traffic demand reaches the junction capacity. The implementation of this controller does not require complicated or demanding hardware, and such simplicity makes it a useful tool for offline studies or realtime control purposes.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.
Resumo:
In this paper, a method of thrust allocation based on a linearly constrained quadratic cost function capable of handling rotating azimuths is presented. The problem formulation accounts for magnitude and rate constraints on both thruster forces and azimuth angles. The advantage of this formulation is that the solution can be found with a finite number of iterations for each time step. Experiments with a model ship are used to validate the thrust allocation system.
Resumo:
In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.
Resumo:
Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE)