587 resultados para Frost.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of X-ray diffraction, thermal analysis and Raman spectroscopy was employed to characterise the ageing of alumina hydrolysates synthesised from the hydrolysis of anhydrous tri-sec-butoxyaluminium(III). X-Ray diffraction showed that the alumino-oxy(hydroxy) hydrolysates were pseudoboehmite. For boehmite the lamellar spacings are in the b direction and multiple d(020) peaks are observed for the un-aged hydrolysate. After 4 h of ageing, a single d(020) peak is observed at 6.53 Å. Thermal analysis showed five endotherms at 70, 140, 238, 351 and 445°C. These endotherms are attributed to the dehydration and dehydroxylation of the boehmite-like hydrolysate. Raman spectroscopy shows the presence of bands for the washed hydrolysates at 333, 355, 414, 455, 475, 495, 530 and 675 cm–1. These bands are attributed to pseudoboehmite. Ageing of the hydrolysates results in an increase in the crystallite size of the pseudoboehmite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaolinite surfaces were modified by mechanochemical treatment for periods of time up to 10 h. X-ray diffraction shows a steady decrease in intensity of the d(001) spacing with mechanochemical treatment, resulting in the delamination of the kaolinite and a subsequent decrease in crystallite size with grinding time. Thermogravimetric analyses show the dehydroxylation patterns of kaolinite are significantly modified. Changes in the molecular structure of the kaolinite surface hydroxyls were followed by infrared spectroscopy. Hydroxyls were lost after 10 h of grinding as evidenced by a decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm−1 and the deformation modes at 937 and 915 cm−1. Concomitantly an increase in the hydroxyl stretching vibrations of water is found. The water-bending mode was observed at 1650 cm−1, indicating that water is coordinating to the modified kaolinite surface. Changes in the surface structure of the OSiO units were reflected in the SiO stretching and OSiO bending vibrations. The decrease in intensity of the 1056 and 1034 cm−1 bands attributed to kaolinite SiO stretching vibrations were concomitantly matched by the increase in intensity of additional bands at 1113 and 520 cm−1 ascribed to the new mechanically synthesized kaolinite surface. Mechanochemical treatment of the kaolinite results in a new surface structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that boehmite (AlOOH) nanofibers formed in the presence of nonionic poly(ethylene oxide) (PEO) surfactant at 373 K. A novel approach is proposed in this study for the growth of the boehmite nanofibers: when fresh aluminum hydrate precipitate was added at regular interval to initial mixture of boehmite and PEO surfactant at 373 K, the nanofibers grow from 40 to 50 nm long to over 100 nm. It is believed that the surfactant micelles play an important role in the nanofiber growth: directing the assembly of aluminum hydrate particles through hydrogen bonding with the hydroxyls on the surface of aluminum hydrate particles. Meanwhile a gradual improvement in the crystallinity of the fibers during growth is observed and attributed to the Ostwald ripening process. This approach allows us to precisely control the size and morphology of boehmite nanofibers using soft chemical methods and could be useful for low temperature, aqueous syntheses of other oxide nanomaterials with tailorable structural specificity such as size, dimension and morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.