31 resultados para Forage crops. Feed crops, Includes sileage, grasses, hay, legumes etc
Resumo:
Disposal of mud and ash, particularly in wet weather conditions, is a significant expense for mills. This paper reports on part of a process to pelletise mud and ash, aimed at making mud and ash more attractive to growers across entire mill districts. The full process and the re-constituting and centrifuging rotary vacuum filter mud part of the process were described in two papers to the 2011 conference. The component described in this paper involves aspects of mixing mud and ash with subsequent drying using boiler exit gas. The mud material needs to mix easily with boiler ash and the mixture has to feed easily into and be pneumatically conveyed by a flue gas dryer. The performance of a pilot flue gas dryer for drying mud and ash was evaluated. The mud and ash mixture was found to dry much faster than final bagasse, provided the mud and ash material was broken up into individual particles. A previously developed computer model of bagasse drying was updated to take into account the smaller particle size of the mud and ash mixture. This upgraded model predicted the performance of the pilot flue gas dryer well.
Resumo:
Universities often struggle to satisfy students’ need for feedback. This is an area where student satisfaction with courses of study can be low. Yet it is clear that one of the properties of good teaching is giving the highest quality feedback on student work. The term ‘feedback’ though is most commonly associated with summative assessment given by a teacher after work is completed. The student can often be a passive participant in the process. This paper looks at the implementation of a web based interactive scenario completed by students prior to summative assessment. It requires students to participate actively to develop and improve their legal problem solving skills. Traditional delivery of legal education focuses on print and an instructor who conveys the meaning of the written word to students. Today, mixed modes of teaching are often preferred and they can provide enhanced opportunities for feeding forward with greater emphasis on what students do. Web based activities allow for flexible delivery; they are accessible off campus, at a time that suits the student and may be completed by students at their own pace. This paper reports on an online interactive activity which provides valuable formative feedback necessary to allow for successful completion of a final problem solving assignment. It focuses on how the online activity feeds forward and contributes to the development of legal problem solving skills. Introduction to Law is a unit designed and introduced for completion by undergraduate students from faculties other than law but is focused most particularly on students enrolled in the Bachelor of Entertainment Industries degree, a joint initiative of the faculties of Creative Industries, Business and Law at the Queensland University of Technology in Australia. The final (and major) assessment for the unit is an assignment requiring students to explain the legal consequences of particular scenarios. A number of cost effective web based interactive scenarios have been developed to support the unit’s classroom activities. The tool commences with instruction on problem solving method. Students then view the stimulus which is a narrative produced in the form of a music video clip. A series of questions are posed which guide students through the process and they can compare their responses with sample answers provided. The activity clarifies the problem solving method and expectations for the summative assessment and allows students to practise the skill. The paper reports on the approach to teaching and learning taken in the unit including the design process and implementation of the activity. It includes an evaluation of the activity with respect to its effectiveness as a tool to feed forward and reflects on the implications for the teaching of law in higher education.
Resumo:
In 2007, the Queensland University of Technology (QUT) received funding from the Australian Government through the NCRIS program and from the then Queensland Government Department of State Development to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugar cane bagasse. This facility is being constructed adjacent to the Racecourse Sugar Mill in Mackay and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). The MRBPP will be capable of processing biomass through a pressurised pretreatment reactor and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products will also be produced at a pilot scale for product development and testing.
Resumo:
Roller mills are typically used to crush sugarcane to express the juice from which sugar is manufactured. The mill rolls need to provide sufficient grip to ensure minimal sliding of the sugarcane along the roll surface. The rolls are subject to pressures up to 55 MPa from the sugarcane bagasse (as the sugarcane is called after first being crushed between a pair of rolls). The insoluble component of sugarcane includes typically 10% ash that largely originates from soil that is harvested with the cane. The sugarcane juice is acidic with pH typically between 5.0 and 5.5. As a result of ash and juice, the mill rolls are subjected to a range of abrasive and corrosive wear mechanisms. Solutions to provide grip and resist wear involve the selection of an appropriate roll shell material and compatible hard facing to provide the desired grip and wear characteristics. This paper reviews the various solutions that have been adopted for grip and durability for mill rolls and highlights the advantages and disadvantages of each method.
Resumo:
Sweet sorghum is receiving significant global interest as an agro-industrial crop because of its capacity to co-produce energy, food, and feed products in integrated biorefineries. This report assesses the opportunities to develop a sweet sorghum industry in Australia, reports on research demonstrating the production of energy, food, and feed products, and assesses the potential economic and sustainability benefits of sweet sorghum biorefineries in the Australian context.
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
MOST PAN stages in Australian factories use only five or six batch pans for the high grade massecuite production and operate these in a fairly rigid repeating production schedule. It is common that some of the pans are of large dropping capacity e.g. 150 to 240 t. Because of the relatively small number and large sizes of the pans, steam consumption varies widely through the schedule, often by ±30% about the mean value. Large fluctuations in steam consumption have implications for the steam generation/condensate management of the factory and the evaporators when bleed vapour is used. One of the objectives of a project to develop a supervisory control system for a pan stage is to (a) reduce the average steam consumption and (b) reduce the variation in the steam consumption. The operation of each of the high grade pans within the schedule at Macknade Mill was analysed to determine the idle (or buffer) time, time allocations for essential but unproductive operations (e.g. pan turn round, charging, slow ramping up of steam rates on pan start etc.), and productive time i.e. the time during boil-on of liquor and molasses feed. Empirical models were developed for each high grade pan on the stage to define the interdependence of the production rate and the evaporation rate for the different phases of each pan’s cycle. The data were analysed in a spreadsheet model to try to reduce and smooth the total steam consumption. This paper reports on the methodology developed in the model and the results of the investigations for the pan stage at Macknade Mill. It was found that the operation of the schedule severely restricted the ability to reduce the average steam consumption and smooth the steam flows. While longer cycle times provide increased flexibility the steam consumption profile was changed only slightly. The ability to cut massecuite on the run among pans, or the use of a high grade seed vessel, would assist in reducing the average steam consumption and the magnitude of the variations in steam flow.
Resumo:
IN MANY FACTORIES, the feed chute of the first mill is operated with a high chute level for the purpose of maximising the cane rate through the mill. There is a trend towards trying to control chute level within a small control range near the top of a chute that can result in rapid changes in cane feeding rate to maintain the chute level set point. This paper reviews the theory that predicts higher cane rate with higher chute level and discusses the main weakness in the theory that it does not consider the beneficial effect on capacity of cane falling from the top of the chute to the top surface of the cane mat. An extension to the chute theory model is described that predicts higher capacity with lower chute level because of the effect of the falling cane. The original model and this extended model are believed to be the upper and lower limits to the true effect. The paper reports an experiment that measured the real effect of chute level on capacity and finds that increasing chute level does lead to higher capacity but that the trend is only about one-third as strong as the original theory predicted. The paper questions whether the benefits of slightly greater capacity outweigh the costs of operating with the small control range near the top of the chute.
Resumo:
The conventional approach to setting a milling unit is essentially based on the desire to achieve a particular bagasse moisture content or fibre fill in each nip of the mill. This approach relies on the selection of the speed at which the mill will operate for the selected fibre rate. There is rarely any checking that the selected speed or the selected fibre fill is achieved and the same set of assumptions is generally carried over to use again in the next year. The conventional approach largely ignores the fact that the selection of mill settings actually determines the speed at which the mill will operate. Making an adjustment with the intent of changing the performance of the mill often also changes the speed of the mill as an unintended consequence. This paper presents an alternative approach to mill setting. The approach discussed makes use of mill feeding theory to define the relationship between fibre rate, mill speed and mill settings and uses that theory to provide an alternative means of determining the settings in some nips of the mill. Mill feeding theory shows that, as the feed work opening reduces, roll speed increases. The theory also shows that there is an optimal underfeed opening and Donnelly chute exit opening that will minimise roll speed and that the current South African guidelines appear to be well away from those optimal values.
Resumo:
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits,as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.
Resumo:
This paper discusses the main milling train management tasks necessary for maintaining good extraction performance through a season. The main activities discussed are making week by week decisions about shredder and mill setting adjustments, and selecting preseason mill settings. To maintain satisfactory milling train extraction performance, the main factors affecting extraction should be examined: cane preparation with pol in open cells or shredder torque, delivery nip compaction through the load or torque controller outputs such as roll lift, feed chute flap position or pressure feeder to mill speed ratio, and added water rate. To select mill settings for the coming season, delivery nip compaction and feed chute exit compaction can be inferred from the previous seasons.
Resumo:
Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.
Resumo:
A whole of factory model of a raw sugar factory was developed in SysCAD software to assess and improve factory operations. The integrated sugar factory model ‘Sugar-SysCAD’ includes individual models for milling, heating and clarification, evaporation, crystallisation, steam cycle, sugar dryer and process and injection water circuits. These individual unit operation models can be either used as standalone models to optimise the unit operation or in the integrated mode to provide more accurate prediction of the effects of changes in any part of the process on the outputs of the whole factory process. Using the integrated sugar factory model, the effect of specific process operations can be understood and practical solutions can be determined to address process problems. The paper presents two factory scenarios to show the capabilities of the whole of factory model.
Resumo:
Records of shrimp growth and water quality made during 12 crops from each of 48 ponds, over a period of 6.5 years, were provided by a Queensland, Australia, commercial shrimp farm, These data were analysed with a new growth model derived from the Gompertz model. The results indicate that water temperature, mortality and pond age significantly affect growth rates. After 180 days, shrimp reach 34 g at constant 30 degrees C, but only 15 g after the same amount of time at 20 degrees C. Mortality, through thinning the density of shrimp in the ponds, increased the growth rate, but the effect is small. With continual production, growth rates at first remained steady, then appeared to decrease for the sixth and seventh crop, after which they have increased steadily with each crop. It appears that conservative pond management, together with a gradual improvement in husbandry techniques, particularly feed management, brought about this change. This has encouraging implications for the long-term sustainability of the farming methods used. The growth model can be used to predict productivity, and hence, profitability, of new aquaculture locations or new production strategies.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics