251 resultados para Flow Chamber
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.
Resumo:
Mock circulation loops are used to evaluate the performance of cardiac assist devices prior to animal and clinical testing. A compressible, translucent silicone ventricle chamber that mimics the exact size, shape and motion of a failing heart is desired to assist in flow visualization studies around inflow cannulae during VAD support. The aim of this study was therefore to design and construct a naturally shaped flexible left ventricle and evaluate its performance in a mock circulation loop. The ventricle shape was constructed by the use of CT images taken from a patient experiencing cardiomyopathic heart failure and used to create a 3D image and subsequent mould to produce a silicone ventricle. Different cardiac conditions were successfully simulated to validate the ventricle performance, including rest, left heart failure and VAD support.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Security-critical communications devices must be evaluated to the highest possible standards before they can be deployed. This process includes tracing potential information flow through the device's electronic circuitry, for each of the device's operating modes. Increasingly, however, security functionality is being entrusted to embedded software running on microprocessors within such devices, so new strategies are needed for integrating information flow analyses of embedded program code with hardware analyses. Here we show how standard compiler principles can augment high-integrity security evaluations to allow seamless tracing of information flow through both the hardware and software of embedded systems. This is done by unifying input/output statements in embedded program execution paths with the hardware pins they access, and by associating significant software states with corresponding operating modes of the surrounding electronic circuitry.