22 resultados para Flórez, Enrique, 1702-1773-Biobibliografías
Resumo:
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.
Resumo:
Inter-aquifer mixing studies are usually made carrying out hydrochemical and isotopic techniques only. In this thesis these techniques have been integrated with three-dimensional geological modelling proving to be a better approach for inter—aquifer mixing assessment in regional areas, and also highlighting the influence of faulting in the understanding of groundwater and gas migration, which could not be possible using the two fist techniques alone. The results are of particular interest for coal seam gas basins and can even be used as exploration tools as areas of higher permeability and gas migration were identified.
Resumo:
Aims To discuss ethical issues that may arise in using WWA to monitor illicit drug use in the general population and in entertainment precincts, prisons, schools and work-places. Method Review current applications of WWA and identify ethical and social issues that may be raised with current and projected future uses of this method. Results Wastewater analysis (WWA) of drug residues is a promising method of monitoring illicit drug use that may overcome some limitations of other monitoring methods. When used for monitoring purposes in large populations, WWA does not raise major ethical concerns because individuals are not identified and the prospects of harming residents of catchment areas are remote. When WWA is used in smaller catchment areas (entertainment venues, prisons, schools or work-places) their results could, possibly, indirectly affect the occupants adversely. Researchers will need to take care in reporting their results to reduce media misreporting. Fears about possible use of WWA for mass individual surveillance by drug law enforcement officials are unlikely to be realized, but will need to be addressed because they may affect public support adversely for this type of research. Conclusions Using wastewater analysis to monitor illicit drug use in large populations does not raise major ethical concerns, but researchers need to minimize possible adverse consequences in studying smaller populations, such as workers, prisoners and students.
Resumo:
It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.
Resumo:
A rich source of Japanese jurisprudence on sexual equality underlies Japan's emerging law against sexual harassment. With no law specifically outlawing sexual harassment, academics and the courts have invoked the principle of sexual equality to support their conclusion that Japanese law carries an implicit prohibition against acts of sexual harassment. In developing a legal case against sexual harassment, Japanese courts and academic commentators have introduced novel constructions of equality. The key innovations include relational equality, inherent equality and quantifiable equality. In presenting some of these Japanese contributions to equality jurisprudence, the hope is that feminist discourse on equality can take place in a broader context-a context that does not ignore the Eastern cultural experience.
Resumo:
We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics. © 2005 Cancer Research UK.
Resumo:
The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.