106 resultados para Fat metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine exercise-induced changes in the reward value of food during medium-term supervised exercise in obese individuals. ---------- Subjects/Methods: The study was a 12-week supervised exercise intervention prescribed to expend 500 kcal/day, 5 d/week. 34 sedentary obese males and females were identified as responders (R) or non-responders (NR) to the intervention according to changes in body composition relative to measured energy expended during exercise. Food reward (ratings of liking and wanting, and relative preference by forced choice pairs) for an array of food images was assessed before and after an acute exercise bout. ---------- Results. 20 responders and 14 non-responders were identified. R lost 5.2 kg±2.4 of total fat mass and NR lost 1.7 kg±1.4. After acute exercise, liking for all foods increased in NR compared to no change in R. Furthermore, NR showed an increase in wanting and relative preference for high-fat sweet foods. These differences were independent of 12-weeks regular exercise and weight loss. ---------- Conclusion. Individuals who showed an immediate post-exercise increase in liking and increased wanting and preference for high-fat sweet foods displayed a smaller reduction in fat mass with exercise. For some individuals, exercise increases the reward value of food and diminishes the impact of exercise on fat loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity represents a major health, social and economic burden to many developing and Westernized communities, with the prevalence increasing at a rate exceeding almost all other medical conditions. Despite major recent advances in our understanding of adipose tissue metabolism and dynamics, we still have limited insight into the regulation of adipose tissue mass in humans. Any significant increase in adipose tissue mass requires proliferation and differentiation of precursor cells (preadipocytes) present in the stromo-vascular compartment of adipose tissue. These processes are very complex and an increasing number of growth factors and hormones have been shown to modulate the expression of genes involved in preadipocyte proliferation and differentiation. A number of transcription factors, including the C/EBP family and PP ARy, have been identified as integral to adipose tissue development and preadipocyte differentiation. Together PP ARy and C/EBPa regulate important events in the activation and maintenance of the terminally differentiated phenotype. The ability of PP ARy to increase transcription through its DNA recognition site is dependent on the binding of ligands. This suggests that an endogenous PP ARy ligand may be an important regulator of adipogenesis. Adipose tissue functions as both the major site of energy storage in the body and as an endocrine organ synthesizing and secreting a number of important molecules involved in regulation of energy balance. For optimum functioning therefore, adipose tissue requires extensive vascularization and previous studies have shown that growth of adipose tissue is preceded by development of a microvascular network. This suggests that paracrine interactions between constituent cells in adipose tissue may be involved in both new capillary formation and fat cell growth. To address this hypothesis the work in this project was aimed at (a) further development of a method for inducing preadipocyte differentiation in subcultured human cells; (b) establishing a method for simultaneous isolation and separate culture of both preadipocytes and microvascular endothelial cells from the same adipose tissue biopsies; (c) to determine, using conditioned medium and co-culture techniques, if endothelial cell-derived factors influence the proliferation and/or differentiation of human preadipocytes; and (d) commence characterization of factors that may be responsible for any observed paracrine effects on aspects of human adipogenesis. Major findings of these studies were as follows: (A) Inclusion of either linoleic acid (a long-chain fatty acid reported to be a naturally occurring ligand for PP ARy) or Rosiglitazone (a member of the thiazolidinedione class of insulin-sensitizing drugs and a synthetic PPARy ligand) in differentiation medium had markedly different effects on preadipocyte differentiation. These studies showed that human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation, and that thiazolidinediones and fatty acids may exert their adipogenic and lipogenic effects via different biochemical pathways. It was concluded that Rosiglitazone is a more potent inducer of human preadipocyte differentiation than linoleic acid. (B) A method for isolation and culture of both endothelial cells and preadipocytes from the same adipose tissue biopsy was developed. Adipose-derived microvascular endothelial cells were found to produce factor/s, which enhance both proliferation and differentiation of human preadipocytes. (C) The adipogenic effects of microvascular endothelial cells can be mimicked by exposure of preadipocytes to members of the Fibroblast Growth Factor family, specifically ~-ECGF and FGF-1. (D) Co-culture of human preadipocytes with endothelial cells or exposure of preadipocytes to either ~-ECGF or FGF-1 were found to 'prime' human preadipocytes, during their proliferative phase of growth, for thiazolidinedione-induced differentiation. (E) FGF -1 was not found to be acting as a ligand for PP ARy in this system. Findings from this project represent a significant step forward in our understanding of factors involved in growth of human adipose tissue and may lead to the development of therapeutic strategies aimed at modifying the process. Such strategies would have potential clinical utility in the treatment of obesity and obesity related disorders such as Type II Diabetes.